In this manuscript, we describe the single-step preparation of a cyclic tetramer of acenaphthylene through a Lewis acid-catalyzed aldol cyclization of 1-acenaphthenone. The previously unexplored cyclic tetramer material differs from the better-known cyclic trimer, decacyclene, due to the presence of a central eight-membered ring. This ring not only forces the molecule to distort significantly from planarity, but is also responsible for its unique electronic properties, including a decrease in the reduction potential (by about 0.4 eV) and optical gap (by about 0.73 eV), compared to the more planar decacyclene. The synthesized compound crystallizes into a unique packing structure with significant π-stacking observed between adjacent molecules. Furthermore, due to its saddle-like shape, the cyclic tetramer is able to form shape-complementary interactions between its concave surface and the convex outer surface of buckminsterfullerene to generate cocrystalline supramolecular assemblies.
The radical anion and dianion of tridecacyclene (CH, 1) have been prepared by reduction with potassium metal. Analysis of the solid-state structure of the dipotassium salt of the dianion (3) reveals evidence of increased aromatic character within the structure's central 8-membered ring despite preservation of the tub-like shape inherent to its neutral parent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.