Infectious diseases remain a significant health concern around the world. Mathematical modeling of these diseases can help us understand their dynamics and develop more effective control strategies. In this work, we show the capabilities of interior-point methods and nonlinear programming (NLP) formulations to efficiently estimate parameters in multiple discrete-time disease models using measles case count data from three cities. These models include multiplicative measurement noise and incorporate seasonality into multiple model parameters. Our results show that nearly identical patterns are estimated even when assuming seasonality in different model parameters, and that these patterns show strong correlation to school term holidays across very different social settings and holiday schedules. We show that interior-point methods provide a fast and flexible approach to parameterizing models that can be an alternative to more computationally intensive methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.