Objective clinical analyses are required to evaluate balance control performance. To this outcome, it is relevant to study experimental protocols and to develop devices that can provide reliable information about the ability of a subject to maintain balance. Whereas most of the applications available in the literature and on the market involve shifting and tilting of the base of support, the system presented in this paper is based on the direct application of an impulsive (short-lasting) force by means of an electromechanical device (named automatic perturbator). The control of such stimulation is rather complex since it requires high dynamics and accuracy. Moreover, the occurrence of several non-linearities, mainly related to the human–machine interaction, signals the necessity for robust control in order to achieve the essential repeatability and reliability. A linear electric motor, in combination with Model Predictive Control, was used to develop an automatic perturbator prototype. A test bench, supported by model simulations, was developed to test the architecture of the perturbation device. The performance of the control logic has been optimized by iterative tuning of the controller parameters, and the resulting behavior of the automatic perturbator is presented.
Nowadays, increasing attention is being paid to techniques aimed at assessing a subject’s ability to maintain or regain control of balance, thus reducing the risk of falls. To this end, posturographic analyses are performed in different clinical settings, both in unperturbed and perturbed conditions. This article presents a new Hardware-In-the-Loop (HIL) equipment designed for the development of an automatic perturbator for postural control analysis, capable of providing controlled mechanical stimulation by means of an impulsive force exerted on a given point of the body. The experimental equipment presented here includes the perturbator and emulates its interaction with both the subject’s body and the operator performing the test. The development of the perturbator and of the entire HIL equipment is described, including component selection, modeling of the entire system, and experimentally verified simulations used to study and define the most appropriate control laws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.