We present FunTAL, the first multi-language system to formalize safe interoperability between a high-level functional language and low-level assembly code while supporting compositional reasoning about the mix. A central challenge in developing such a multi-language is bridging the gap between assembly, which is staged into jumps to continuations, and high-level code, where subterms return a result. We present a compositional stack-based typed assembly language that supports components, comprised of one or more basic blocks, that may be embedded in high-level contexts. We also present a logical relation for FunTAL that supports reasoning about equivalence of high-level components and their assembly replacements, mixed-language programs with callbacks between languages, and assembly components comprised of different numbers of basic blocks.
Compiler correctness is an old problem, with results stretching back beyond the last half-century. Founding the field, John McCarthy and James Painter set out to build a łcompletely trustworthy compilerž. And yet, until quite recently, even despite truly impressive verification efforts, the theorems being proved were only about the compilation of whole programs, a theoretically quite appealing but practically unrealistic simplification. For a compiler correctness theorem to assure complete trust, the theorem must reflect the reality of how the compiler will be used.There has been much recent work on more realistic łcompositionalž compiler correctness aimed at proving correct compilation of components while supporting linking with components compiled from different languages using different compilers. However, the variety of theorems, stated in remarkably different ways, raises questions about what researchers even mean by a łcompiler is correct. ž In this pearl, we develop a new framework with which to understand compiler correctness theorems in the presence of linking, and apply it to understanding and comparing this diversity of results. In doing so, not only are we better able to assess their relative strengths and weaknesses, but gain insight into what we as a community should expect from compiler correctness theorems of the future.
Nephrotic syndrome (NS) affects 115-169 children per 100,000, with rates varying by ethnicity and location. Immune dysregulation, systemic circulating substances, or hereditary structural abnormalities of the podocyte are considered to have a role in the etiology of idiopathic NS. Following daily therapy with corticosteroids, more than 85% of children and adolescents (often aged 1 to 12 years) with idiopathic nephrotic syndrome have full proteinuria remission. Patients with steroid-resistant nephrotic syndrome (SRNS) do not demonstrate remission after four weeks of daily prednisolone therapy. The incidence of steroid-resistant nephrotic syndrome in children varies between 35 and 92 percent. A third of SRNS patients have mutations in one of the important podocyte genes. An unidentified circulating factor is most likely to blame for the remaining instances of SRNS. The aim of this article is to explore and review the genetic factors and management of steroid-resistant nephrotic syndrome. An all language literature search was conducted on MEDLINE, COCHRANE, EMBASE, and Google Scholar till September 2021. The following search strings and Medical Subject Headings (MeSH) terms were used: “Steroid resistance”, “nephrotic syndrome”, “nephrosis” and “hypoalbuminemia”. We comprehensively reviewed the literature on the epidemiology, genetics, current treatment protocols, and management of steroid-resistant nephrotic syndrome. We found that for individuals with non-genetic SRNS, calcineurin inhibitors (cyclosporine and tacrolimus) constitute the current mainstay of treatment, with around 70% of patients achieving full or partial remission and an acceptable long-term prognosis. Patients with SRNS who do not react to calcineurin inhibitors or other immunosuppressive medications may have deterioration in kidney function and may develop end-stage renal failure. Nonspecific renal protective medicines, such as angiotensin-converting enzyme inhibitors, angiotensin 2 receptor blockers, and anti-lipid medications, slow the course of the illness. Recurrent focal segmental glomerulosclerosis in the allograft affects around a third of individuals who get a kidney transplant, and it frequently responds to a combination of plasma exchange, rituximab, and increased immunosuppression. Despite the fact that these results show a considerable improvement in outcome, further multicenter controlled studies are required to determine the optimum drugs and regimens to be used.
We present FunTAL, the first multi-language system to formalize safe interoperability between a high-level functional language and low-level assembly code while supporting compositional reasoning about the mix. A central challenge in developing such a multi-language is bridging the gap between assembly, which is staged into jumps to continuations, and high-level code, where subterms return a result. We present a compositional stack-based typed assembly language that supports components, comprised of one or more basic blocks, that may be embedded in high-level contexts. We also present a logical relation for FunTAL that supports reasoning about equivalence of high-level components and their assembly replacements, mixed-language programs with callbacks between languages, and assembly components comprised of different numbers of basic blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.