We prove a version of McDiarmid's bounded differences inequality for Markov chains, with constants proportional to the mixing time of the chain. We also show variance bounds and Bernstein-type inequalities for empirical averages of Markov chains. In the case of non-reversible chains, we introduce a new quantity called the "pseudo spectral gap", and show that it plays a similar role for non-reversible chains as the spectral gap plays for reversible chains.Our techniques for proving these results are based on a coupling construction of Katalin Marton, and on spectral techniques due to Pascal Lezaud. The pseudo spectral gap generalises the multiplicative reversiblication approach of Jim Fill.
We prove concentration inequalities for general functions of weakly dependent random variables satisfying the Dobrushin condition. In particular, we show Talagrand's convex distance inequality for this type of dependence. We apply our bounds to a version of the stochastic salesman problem, the Steiner tree problem, the total magnetisation of the Curie-Weiss model with external field, and exponential random graph models. Our proof uses the exchangeable pair method for proving concentration inequalities introduced by Chatterjee (2005). Another key ingredient of the proof is a subclass of (a, b)-self-bounding functions, introduced by Boucheron, Lugosi and Massart (2009).
This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.
The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane perpendicular to the gradient of the negative log-target density at the arrival times of an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival times of a homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques. We use our understanding of the mixing properties of the limiting RHMC process to choose the refreshment rate parameter of BPS. This results in significantly better performance in our simulation study than previously suggested guidelines.
The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane tangent to the gradient of the negative log-target density at the arrival times of an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival times of an homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.