We report quantum wave packet calculations of state-to-state reaction probabilities and cross sections for the reaction H+H(2)(v(0)=0,j(0)=0)-->H(2)(v,j)+H, at total energies up to 4.5 eV above the ground state potential minimum. The calculations are repeated using (i) the ground electronic state only, (ii) the ground state plus the diagonal non-Born-Oppenheimer correction, (iii) the ground state, diagonal non-Born-Oppenheimer correction and geometric phase (GP), and (iv) both electronic states including all nonadiabatic couplings, using the diabatic potential approach of Mahapatra et al. [J. Phys. Chem. A 105, 2321 (2001)]. The results for calculations (iii) and (iv) are in very close agreement, showing that the upper electronic state makes only a very small contribution to the state-to-state dynamics, even at energies much higher than the conical intersection minimum (at 2.74 eV). At total energies above 3.5 eV, many of the state-to-state reaction probabilities show strong GP effects, indicating that they are dominated by interference between one- and two-transition-state (1-TS and 2-TS) reaction paths. These effects survive the coherent sum over partial waves to produce features in the state-to-state differential cross sections which could be detected in an experiment with an angular resolution of approximately 20 degrees . Efficient dephasing of the interference between the 1-TS and 2-TS contributions causes almost complete cancellation of the GP in the integral cross sections, thus continuing a trend observed at lower energies in earlier work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.