Given a partition λ of n, the Schur functor S λ associates to any complex vector space V , a subspace S λ (V ) of V ⊗n . Hermite's reciprocity law, in terms of the Schur functor, states that S (p) S (q) (C 2 ) ≃ S (q) S (p) (C 2 ) . We extend this identity to many other identities of the type S λ S δ (C 2 ) ≃ Sµ Sǫ(C 2 ) .
In this article, we formally define and investigate the computational complexity of the definability problem for open first-order formulas (i.e. quantifier free first-order formulas) with equality. Given a logic $\boldsymbol{\mathcal{L}}$, the $\boldsymbol{\mathcal{L}}$-definability problem for finite structures takes as an input a finite structure $\boldsymbol{A}$ and a target relation $T$ over the domain of $\boldsymbol{A}$ and determines whether there is a formula of $\boldsymbol{\mathcal{L}}$ whose interpretation in $\boldsymbol{A}$ coincides with $T$. We show that the complexity of this problem for open first-order formulas (open definability, for short) is coNP-complete. We also investigate the parametric complexity of the problem and prove that if the size and the arity of the target relation $T$ are taken as parameters, then open definability is $\textrm{coW}[1]$-complete for every vocabulary $\tau $ with at least one, at least binary, relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.