It has become evident in recent years that intracranial inflammation after traumatic brain injury (TBI) is, at least in part, mediated by activation of the complement system. However, most conclusions have been drawn from experimental studies, and the intrathecal activation of the complement cascade after TBI has not yet been demonstrated in humans. In the present study, we analyzed the levels of the soluble terminal complement complex sC5b-9 by ELISA in ventricular cerebrospinal fluid (CSF) of patients with severe TBI (n = 11) for up to 10 days after trauma. The mean sC5b-9 levels in CSF were significantly elevated in 10 of 11 TBI patients compared to control CSF from subjects without trauma or inflammatory neurological disease (n = 12; p < 0.001). In some patients, the maximal sC5b-9 concentrations were up to 1,800-fold higher than in control CSF. The analysis of the extent of posttraumatic blood-brain barrier (BBB) dysfunction, as determined by CSF/serum albumin quotient (Q(A)), revealed that patients with a moderate to severe BBB impairment (mean Q(A) > 0.01) had significantly higher intrathecal sC5b-9 levels as compared to patients with normal BBB function (mean Q(A) < 0.007; p < 0.0001). In addition, a significant correlation between the individual daily Q(A) values and the corresponding sC5b-9 CSF levels was detected in 8 of 11 patients (r = 0.72-0.998; p < 0.05). These data demonstrate for the first time that terminal pathway complement activation occurs after head injury and suggest a possible pathophysiological role of complement with regard to posttraumatic BBB dysfunction.
Proinflammatory cytokines are important mediators of neuroinflammation after traumatic brain injury. The role of interleukin (IL)-18, a new member of the IL-1 family, in brain trauma has not been reported to date. The authors investigated the posttraumatic release of IL-18 in murine brains following experimental closed head injury (CHI) and in CSF of CHI patients. In the mouse model, intracerebral IL-18 was induced within 24 hours by ether anesthesia and sham operation. Significantly elevated levels of IL-18 were detected at 7 days after CHI and in human CSF up to 10 days after trauma. Published data imply that IL-18 may play a pathophysiological role in inflammatory CNS diseases; therefore its inhibition may ameliorate outcome after CHI. To evaluate the functional aspects of IL-18 in the injured brain, mice were injected systemically with IL-18-binding protein (IL-18BP), a specific inhibitor of IL-18, 1 hour after trauma. IL-18BP-treated mice showed a significantly improved neurological recovery by 7 days, accompanied by attenuated intracerebral IL-18 levels. This demonstrates that inhibition of IL-18 is associated with improved recovery. However, brain edema at 24 hours was not influenced by IL-18BP, suggesting that inflammatory mediators other than IL-18 induce the early detrimental effects of intracerebral inflammation.
Clinical options for systemic therapy of neuroendocrine tumors (NET) are limited. Development of new drugs requires suitable representative and model systems. So far, the unavailability of a human model with a well-differentiated phenotype and typical growth characteristics has impaired preclinical research in NET. Herein, we establish and characterize a lymph node-derived cell line (NT-3) from a male patient with well-differentiated pancreatic NET. Neuroendocrine differentiation and tumor biology was compared with existing NET cell lines BON and QGP-1. growth was assessed in a xenograft mouse model. The neuroendocrine identity of NT-3 was verified by expression of multiple NET-specific markers, which were highly expressed in NT-3 compared with BON and QGP-1. In addition, NT-3 expressed and secreted insulin. Until now, this well-differentiated phenotype is stable since 58 passages. The proliferative labeling index, measured by Ki-67, of 14.6% ± 1.0% in NT-3 is akin to the original tumor (15%-20%), and was lower than in BON (80.6% ± 3.3%) and QGP-1 (82.6% ± 1.0%). NT-3 highly expressed somatostatin receptors (SSTRs: 1, 2, 3, and 5). Upon subcutaneous transplantation of NT-3 cells, recipient mice developed tumors with an efficient tumor take rate (94%) and growth rate (139% ± 13%) by 4 weeks. Importantly, morphology and neuroendocrine marker expression of xenograft tumors resembled the original human tumor. High expression of somatostatin receptors and a well-differentiated phenotype as well as a slow growth rate qualify the new cell line as a relevant model to study neuroendocrine tumor biology and to develop new tumor treatments. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.