Within long term symbioses animals integrate their physiology and development with their symbiont. In a model nutritional mutualism, aphids harbor the endosymbiont, Buchnera, within specialized bacteriocyte cells. Buchnera synthesizes essential amino acids (EAA) and vitamins for their host, which are lacking from the aphid’s plant sap diet. It is unclear if the aphid host differentially expresses aphid EAA metabolism pathways and genes that collaborate with Buchnera for the production of EAA and vitamins throughout nymphal development when feeding on plants. It is also unclear if aphid bacteriocytes are differentially methylated throughout aphid development as DNA methylation may play a role in gene regulation. By analyzing aphid gene expression, we determined that the bacteriocyte is metabolically more active in metabolizing Buchnera’s EAAs and vitamins early in nymphal development compared to intermediate or later immature and adult lifestages. The largest changes in aphid bacteriocyte gene expression, especially for aphid genes that collaborate with Buchnera, occurred during the 3rd to 4th instar transition. During this transition there is a huge shift in the bacteriocyte from a high energy ‘nutrient-consuming state’ to a ‘recovery and growth state’ where patterning and signaling genes and pathways are upregulated and differentially methylated, and de novo methylation is reduced as evidenced by homogenous DNA methylation profiles after the 2nd instar. Moreover, bacteriocyte number increased and Buchnera’s titer decreased throughout aphid nymphal development. These data suggest in combination that bacteriocytes of older nymphal and adult lifestages depend less on the nutritional symbiosis compared to early nymphal lifestages.
BackgroundGene regulatory networks (GRNs) underlie developmental patterning and morphogenetic processes, and changes in the interactions within the underlying GRNs are a major driver of evolutionary processes. In order to make meaningful comparisons that can provide significant insights into the evolution of regulatory networks, homologous networks from multiple taxa must be deeply characterized. One of the most thoroughly characterized GRNs is the dorsoventral (DV) patterning system of the Drosophila melanogaster embryo. We have developed the wasp Nasonia as a comparative DV patterning model because it has shown the convergent evolution of a mode of early embryonic patterning very similar to that of the fly, and it is of interest to know whether the similarity at the gross level also extends to the molecular level.ResultsWe used RNAi to dorsalize and ventralize Nasonia embryos, RNAseq to quantify transcriptome-wide expression levels, and differential expression analysis to identify genes whose expression levels change in either RNAi case. This led to the identification of >100 genes differentially expressed and regulated along the DV axis. Only a handful of these genes are shared DV components in both fly and wasp. Many of those unique to Nasonia are cytoskeletal and adhesion molecules, which may be related to the divergent cell and tissue behavior observed at gastrulation. In addition, many transcription factors and signaling components are only DV regulated in Nasonia, likely reflecting the divergent upstream patterning mechanisms involved in producing the conserved pattern of cell fates observed at gastrulation. Finally, several genes that lack Drosophila orthologs show robust and distinct expression patterns. These include genes with vertebrate homologs that have been lost in the fly lineage, genes that are found only among Hymenoptera, and several genes that entered the Nasonia genome through lateral transfer from endosymbiotic bacteria.ConclusionsAltogether, our results provide insights into how GRNs respond to new functional demands and how they can incorporate novel components.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-016-0285-y) contains supplementary material, which is available to authorized users.
Despite the fact that sap-feeding hemipterans are major agricultural pests, little is known about the pea aphid’s (Acyrthosiphon pisum) nymphal development, compared to other insect models. Given our limited understanding of A. pisum nymphal development and variability in the naming/timing of its developmental events between different environmental conditions and studies, here, we address developmental knowledge gaps by elucidating how diet impacts A. pisum nymphal development for the LSR1 strain when it develops on its universal host plant (Vicia faba), isolated leaves, and artificial diet. Moreover, we test how plant age and transgenerational stressors, such as overcrowding and low plant vigor, can affect nymphal development. We also validate a morphological method to quickly confirm the life stage of each nymphal instar within a mixed population. Overall, we found extremely high variation in the timing of developmental events and a significant delay in nymphal (~5–25-h/instar) and pre-reproductive adult (~40-h) development when reared on isolated leaves and artificial diets, compared to intact host plants. Also, delays in development were observed when reared on older host plants (~9–17-h/event, post 2nd instar) or when previous generations were exposed to overcrowding on host plants (~20-h delay in nymph laying) compared to controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.