Biodegradable hydrogels are an important class of biomaterials with a diverse range of applications. In some cases, a rapid hydrogel degradation rate is advantageous. Polycarbonate hydrogels based on dihydroxyacetone (DHA), a natural metabolite, have been reported to undergo surprisingly fast hydrolytic degradation. In the present work, insight into the key features of DHA that contribute to the observed degradation rates is gained. In vitro degradation (mass loss) of three different chemically cross‐linked polycarbonate hydrogels is investigated to shed light on the role of the ketone functional group, as well as the carbon‐chain length between the ketone and carbonate bonds. The ketone is found to be the major cause of rapid degradation. Also, mass loss is accelerated by increased temperature and pH, offering insight into potential tuning parameters and storage conditions. The results show that DHA is a promising monomeric unit for the design of rapidly degrading, biocompatible, and functional biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.