One of the main processes used to maintain grain quality in large storage bins is aeration. An optimization model that considers the limited and discrete nature of the air inlets, in addition to the geometric characteristics of the storage bin, could produce results more easily applicable results for the design of new grain storage bins. The objective of this study was to parameterize and to apply the Darcy-Forchheimer model for simulating airflow in soybean grain mass as function of grain layer height, and develop an artificial intelligence method based on genetic algorithm for optimizing grain storage bin dimensions and air inlet configurations to obtain a more homogeneous airflow in the grain mass. The parameterization considered the effect of grain compaction and the OpenFOAM simulations showed good agreement with the experimental data. The proposed genetic algorithm was able to increase the airflow homogenization when compared to the grain storage bin used as reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.