Personalized wound dressings provide enhanced healing for different wound types; however multicomponent wound dressings with discretely controllable delivery of different biologically active agents are yet to be developed. Here we report 3D-printed multicomponent biocomposite hydrogel wound dressings that have been selectively loaded with small molecules, metal nanoparticles, and proteins for independently controlled release at the wound site. Hydrogel wound dressings carrying antibacterial silver nanoparticles and vascular endothelial growth factor with predetermined release profiles were utilized to study the physiological response of the wound in a mouse model. Compared to controls, the application of dressings resulted in improvement in granulation tissue formation and differential levels of vascular density, dependent on the release profile of the growth factor. Our study demonstrates the versatility of the 3D-printed hydrogel dressings that can yield varied physiological responses in vivo and can further be adapted for personalized treatment of various wound types.
Composite films of proteins and polysaccharides have a broad range of biomedical and food packaging applications, in which they are frequently exposed to fluid environments with varying ionic strengths. In the present work, we report the behavior of biopolymer films derived from chitosan (Ch), gelatin (GEL), and Ch/GEL mixture in salt solutions with varying concentrations and ion charges. The swelling and dissolution of the Ch films reduced with increasing salt concentration due to the polyelectrolyte behavior of this biopolymer, while the GEL films displayed a polyampholyte behavior, in which film swelling and dissolution were enhanced in salt solutions. Composite Ch/GEL films followed the behavior of GEL. The release of small ionic and zwitter-ionic molecules from the films was enhanced in ionic solutions due to the screened attraction between these molecules and the polymer matrix. These results provide insight into the behavior of protein/polysaccharide films in varying ionic environments, thus enabling enhanced design of biomaterials for a broad range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.