Here, we introduce a new data visualization and exploration method, TMAP (tree-map), which exploits locality sensitive hashing, Kruskal's minimum-spanning-tree algorithm, and a multilevel multipole-based graph layout algorithm to represent large and high dimensional data sets as a tree structure, which is readily understandable and explorable. Compared to other data visualization methods such as t-SNE or UMAP, TMAP increases the size of data sets that can be visualized due to its significantly lower memory requirements and running time and should find broad applicability in the age of big data. We exemplify TMAP in the area of cheminformatics with interactive maps for 1.16 million drug-like molecules from ChEMBL, 10.1 million small molecule fragments from FDB17, and 131 thousand 3Dstructures of biomolecules from the PDB Databank, and to visualize data from literature (GUTENBERG data set), cancer biology (PANSCAN data set) and particle physics (MiniBooNE data set). TMAP is available as a Python package. Installation, usage instructions and application examples can be found at http://tmap.gdb.tools.
Background: Molecular fingerprints are essential cheminformatics tools for virtual screening and mapping chemical space. Among the different types of fingerprints, substructure fingerprints perform best for small molecules such as drugs, while atom-pair fingerprints are preferable for large molecules such as peptides. However, no available fingerprint achieves good performance on both classes of molecules.Results: Here we set out to design a new fingerprint suitable for both small and large molecules by combining substructure and atom-pair concepts. Our quest resulted in a new fingerprint called MinHashed atom-pair fingerprint up to a diameter of four bonds (MAP4). In this fingerprint the circular substructures with radii of r = 1 and r = 2 bonds around each atom in an atom-pair are written as two pairs of SMILES, each pair being combined with the topological distance separating the two central atoms. These so-called atom-pair molecular shingles are hashed, and the resulting set of hashes is MinHashed to form the MAP4 fingerprint. MAP4 significantly outperforms all other fingerprints on an extended benchmark that combines the Riniker and Landrum small molecule benchmark with a peptide benchmark recovering BLAST analogs from either scrambled or point mutation analogs. MAP4 furthermore produces well-organized chemical space tree-maps (TMAPs) for databases as diverse as DrugBank, ChEMBL, SwissProt and the Human Metabolome Database (HMBD), and differentiates between all metabolites in HMBD, over 70% of which are indistinguishable from their nearest neighbor using substructure fingerprints. Conclusion:MAP4 is a new molecular fingerprint suitable for drugs, biomolecules, and the metabolome and can be adopted as a universal fingerprint to describe and search chemical space. The source code is available at https ://githu b.com/reymo nd-group /map4 and interactive MAP4 similarity search tools and TMAPs for various databases are accessible at http://map-searc h.gdb.tools / and http://tm.gdb.tools /map4/.
BackgroundAmong the various molecular fingerprints available to describe small organic molecules, extended connectivity fingerprint, up to four bonds (ECFP4) performs best in benchmarking drug analog recovery studies as it encodes substructures with a high level of detail. Unfortunately, ECFP4 requires high dimensional representations (≥ 1024D) to perform well, resulting in ECFP4 nearest neighbor searches in very large databases such as GDB, PubChem or ZINC to perform very slowly due to the curse of dimensionality.ResultsHerein we report a new fingerprint, called MinHash fingerprint, up to six bonds (MHFP6), which encodes detailed substructures using the extended connectivity principle of ECFP in a fundamentally different manner, increasing the performance of exact nearest neighbor searches in benchmarking studies and enabling the application of locality sensitive hashing (LSH) approximate nearest neighbor search algorithms. To describe a molecule, MHFP6 extracts the SMILES of all circular substructures around each atom up to a diameter of six bonds and applies the MinHash method to the resulting set. MHFP6 outperforms ECFP4 in benchmarking analog recovery studies. By leveraging locality sensitive hashing, LSH approximate nearest neighbor search methods perform as well on unfolded MHFP6 as comparable methods do on folded ECFP4 fingerprints in terms of speed and relative recovery rate, while operating in very sparse and high-dimensional binary chemical space.ConclusionMHFP6 is a new molecular fingerprint, encoding circular substructures, which outperforms ECFP4 for analog searches while allowing the direct application of locality sensitive hashing algorithms. It should be well suited for the analysis of large databases. The source code for MHFP6 is available on GitHub (https://github.com/reymond-group/mhfp). Electronic supplementary materialThe online version of this article (10.1186/s13321-018-0321-8) contains supplementary material, which is available to authorized users.
Predicting the nature and outcome of reactions using computational methods is a crucial tool to accelerate chemical research. The recent application of deep learning-based learned fingerprints to reaction classification and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.