This study focuses on the eastern flank of the Santa Rita syncline (Dorr 1969), with specific emphasis on the region known as Fábrica Nova. Important iron ore deposits are located on the flanks of this structure, such as Timbopeba, Alegria, São Luiz, Tamanduá, Almas and Fábrica Nova. The Santa Rita syncline is a fold with N-S axial direction and of subregional scale, with roots in the adjacent basement of the Santa Bárbara Complex and sectioned by the Água Quente thrust fault. The hypothesis of this study is that the structural framework of the region resulted from the superposition of at least three deformation phases on the Ouro Preto nappe. The Fábrica Nova mine, located in the central portion of the study area, is embedded in a synformal structure with a 100/20 trending axis named Fábrica Nova synform. The proposed model to explain the particular structural geometry of this region is based on the flanking folding mechanism (Passchier 2001). This mechanism may have been developed by E-W crustal shortening during the F4 tectonic deformation phase.
Moisture is a critical variable in iron-ore processing, handling and transportation. During beneficiation, excessive moisture may lead to screen and chute clogging. In transportation, moisture values above transportable moisture limit may cause cargo instabilities, especially in regard to vessels. Moisture is a non-stationary variable that depends on spatial and time distributions. Therefore, classical estimate methods such as ordinary kriging are not appropriate to calculate moisture values. Here, we present an extension of the Normative Mineralogy Calculation to indirectly estimate moisture, considering seasonal influence. This study in based on three iron-ore mines, Galinheiro, Pico and Sapecado. They are located in the Quadrilátero Ferrífero of Minas Gerais, Brazil, a world-class iron-ore district. The method proposed herein provides useful information that can be applied elsewhere. Our results indicate that compact ores show low moisture values with little seasonal influence, while soft ores and canga (iron-rich duricrust) are strongly influenced seasonally due to higher porosity and greater capacity of retaining water in the crystal structure of minerals, such as goethite. Moisture variations may exceed 2% along the year. Such variations are enough to preclude the beneficiation of certain iron ores during the rainy season. For this reason, moisture has been regarded as an essential variable in short-term mining.
Article Highlights
Moisture is a critical variable in iron-ore processing, handling and transportation. Moisture depends on spatial and time distributions; hence classical methods are not appropriate to quantitatively estimate it. This study proposes an indirectly estimate of moisture considering seasonal influence.
Compact iron ores are little influenced seasonally, while soft iron ores and canga (duricrust) are strongly affected by the rainy season due to their higher porosity and greater capacity of retaining water.
The seasonal effect on moisture is an essential variable that must be consider to better effectiveness of iron-ore mining sequencing and beneficiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.