The aim of this paper was to propose and test a continuous cobalt recovery process from waste mobile phone batteries. The procedure started with dismantling, crushing, and classifying the materials. A study on leaching with sulfuric acid and hydrogen peroxide was carried out with subsequent selective separation of cobalt by means of liquid–liquid extraction. The best extraction conditions were determined based on a sequence of experiments that consisted of selecting the best extractant for cobalt, then assessing the impact of extractant concentration, pH, and contact time on the extraction yield. With these conditions, an extraction isotherm was obtained and correlated with a mathematical model to define the number of extraction stages for a countercurrent process using the McCabe–Thiele method. Then, a similar study was done for stripping conditions and, as a last step, cobalt electroplating was performed. The proposed process offers a solution for the treatment of these batteries, avoiding potential problems of contamination and risk for living beings, as well as offering an opportunity to recover valuable metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.