Structural trends for a homologous series of n-alkanethiolate self-assembled monolayers (SAMs), C(n)H(2n+1)S- with 12 < or = n < or = 19, on GaAs(001), studied by a combination of grazing incidence X-ray diffraction and infrared spectroscopy, along with ancillary probes, show an overall decay in organization with decreasing n, with the largest changes occurring below n = 15-16. The long-chain monolayers form a mosaic structure with < or =10 nm domains of molecules organized in an incommensurate pseudo-hcp arrangement with nearest neighbor distances of 4.70 and 5.02 A, a 21.2 A(2) area per chain, two chains per subcell in a herringbone packing with a chain tilt angle of 14 degrees , and preferential domain alignment along the substrate [110]([110]) step edge direction. In contrast, for n < 14 no evidence of translational ordering is seen and the alkyl chains exhibit a loss of conformational ordering and coverage relative to the n > 16 cases. A 4'-methyl-biphenyl-4-thiolate companion SAM shows evidence for ordered structures but with lattice parameters close to those expected for a structure commensurate with the intrinsic GaAs(001) square lattice. These trends are explained on the basis of competitions between lattice, interfacial, and intermolecular forces controlling the nanoscale structures of the SAMs. Overall these results provide an important aspect of understanding the effects of SAM formation on surface properties such as electronic and chemical passivation.
Thin films of small molecules relevant to organic electronics applications often show a confusing degree of polymorphism. An effective reciprocal-space mapping scheme has been developed in order to find and index thin-film reflections which are related to previously known molecular structures. By method of elimination, thin-film reflections due to novel thin-film phases can thus be identified.
The structures of self-assembled monolayers formed by chemisorption of octadecanethiol onto the surfaces of GaAs(001), (110), (111-A)-Ga, and (111-B)-As have been characterized in detail by a combination of X-ray photoelectron, near-edge X-ray absorption fine structure, and infrared spectroscopies and grazing incidence X-ray diffraction. In all cases, the molecular lattices are ordered with hexagonal symmetry, even for the square and rectangular intrinsic substrate (001) and (110) lattices, and the adsorbate lattice spacings are all incommensurate with their respective intrinsic substrate lattices. These results definitively show that the monolayer organization is driven by intermolecular packing forces to assemble in a hexagonal motif, such as would occur in the approach to a limit for an energetically featureless surface. The accompanying introduction of strain into the soft substrate surface lattice via strong S substrate bonds forces the soft substrate lattice to compliantly respond, introducing quasi-2D strain. A notably poorer organization for the (111-A)-Ga case compared to the (111-B)-As and other faces indicates that that the Ga-terminated surface lattice is more resistant to adsorbate packing-induced stress. Overall, the results show that surface molecular self-assembly must be considered as a strongly cooperative process between the substrate surface and the adsorbate and that inorganic substrate surfaces should not be considered as necessarily rigid when strong intermolecular adsorbate packing forces are operative.
Reciprocal space mapping using a linear gas detector in combination with a matching Soller collimator has been applied to map scattering rods of well oriented organic microcrystals grown on a solid surface. Formulae are provided to correct image distortions in angular space and to determine the required oscillation range, in order to measure properly integrated scattering intensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.