After 30 years of characterisation and implementation, fluid percussion injury (FPI) is firmly recognised as one of the best-characterised, reproducible and clinically relevant models of TBI, encompassing concussion through diffuse axonal injury (DAI). Depending on the specific injury parameters (e.g. injury site, mechanical force), FPI can model diffuse TBI with or without a focal component, and may be designated as mild to severe according to the chosen mechanical forces and resulting acute neurological responses. Among FPI models, midline FPI may best represent clinical diffuse TBI, because of the acute behavioural deficits, the transition to late-onset behavioural morbidities, and the absence of gross histopathology. The goal here was to review acute and chronic physiological and behavioural deficits and morbidities associated with diffuse TBI induced by midline FPI. In the absence of neurodegenerative sequelae associated with focal injury, there is a need for biomarkers in the diagnostic, prognostic, predictive and therapeutic approaches to evaluate outcomes from TBI. The current literature suggests that midline FPI offers a clinically-relevant, validated model of diffuse TBI to investigators wishing to evaluate novel therapeutic strategies in the treatment of TBI and the utility of biomarkers in the delivery of healthcare to patients with brain injury.
Chloroform (CF) is a widespread groundwater contaminant not susceptible to aerobic degradation. Under anoxic conditions, CF can undergo abiotic and cometabolic transformation but detoxification is generally not achieved. The recent discovery of distinct Dehalobacter strains that respire CF to dichloromethane (DCM) and ferment DCM to nonchlorinated products promises that bioremediation of CF plumes is feasible. To track both strains, 16S rRNA gene-based qPCR assays specific for either Dehalobacter strain were designed and validated. A laboratory treatability study explored the value of bioaugmentation and biostimulation to achieve CF detoxification using anoxic microcosms established with aquifer material from a CF-contaminated site. Microcosms that received 6% (v/v) of the CF-to-DCM-dechlorinating culture Dhb-CF to achieve an initial Dehalobacter cell titer of 1.6 ± 0.9 × 10(4) mL(-1) dechlorinated CF to stoichiometric amounts of DCM. Subsequent augmentation with 3% (v/v) of the DCM-degrading consortium RM to an initial Dehalobacter cell abundance of 1.2 ± 0.2 × 10(2) mL(-1) achieved complete DCM degradation in microcosms amended with 10 mM bicarbonate. Growth of the CF-respiring and the DCM-degrading Dehalobacter populations and detoxification were also observed in microcosms that received both inocula simultaneously. These findings suggest that anaerobic bioremediation (e.g., bioaugmentation) is a possible remedy at CF- and DCM-contaminated sites without CT, which strongly inhibited CF organohalide respiration and DCM organohalide fermentation.
The microbial mixed culture RM grows with dichloromethane (DCM) as the sole energy source generating acetate, methane, chloride and biomass as products. Chloromethane (CM) was not an intermediate during DCM utilization consistent with the observation that CM could not replace DCM as a growth substrate. Interestingly, cultures that received DCM and CM together degraded both compounds concomitantly. Transient hydrogen (H ) formation reaching a maximum concentration of 205 ± 13 ppmv was observed in cultures growing with DCM, and the addition of exogenous H at concentrations exceeding 3000 ppmv impeded DCM degradation. In contrast, CM degradation in culture RM had a strict requirement for H . Following five consecutive transfers on CM and H , Acetobacterium 16S rRNA gene sequences dominated the culture and the DCM-degrader Candidatus Dichloromethanomonas elyunquensis was eliminated, consistent with the observation that the culture lost the ability to degrade DCM. These findings demonstrate that culture RM harbours different populations responsible for anaerobic DCM and CM metabolism, and further imply that the DCM and CM degradation pathways are mechanistically distinct. H generated during DCM degradation is consumed by the hydrogenotrophic CM degrader, or may fuel other hydrogenotrophic processes, including organohalide respiration, methanogenesis and H /CO reductive acetogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.