Faults can act as flow barriers or conduits to groundwater flow by introducing heterogeneity in permeability. We examine the hydrogeology of the Sandwich Fault Zone, a 137 km long zone of high-angle faults in northern Illinois, using a large-scale historic aquifer test. The fault zone is poorly understood at depth due to the majority of the faults being buried by glacial deposits and its near-vertical orientation which limits geologic sampling across faults. The aquifer test-perhaps one of the largest in terms of overall withdrawal in North American history-was conducted in 1942 at a facility adjacent to the fault zone. More than 34,000 m 3 /day was pumped for 37 days from nine multiaquifer wells open to the stratified Cambrian-Ordovician sandstone aquifer system. We modeled the aquifer test using a transient MODFLOW-USG model and simulated pumping wells with the CLN package. We tested numerous fault core/damage zone conceptualizations and calibrated to drawdown values recorded at production and observation wells. Our analysis indicates that the fault zone is a low-permeability feature that inhibits lateral movement of groundwater and that there is at least an order of magnitude decrease in horizontal hydraulic conductivity in the fault core compared to the undeformed sandstone. Large head declines have occurred north of the fault zone (over 300 m since predevelopment conditions) and modifying fault zone parameters significantly affects calibration to regional drawdown on a decadal scale. The flow-barrier behavior of the fault zone has important implications for future groundwater availability in this highly stressed region. Article impact statement: Modeling a large-scale historic aquifer test determined the hydraulic conductivity of a deep vertical fault zone in a multiaquifer system.
Deep basin aquifers are increasingly used in water‐stressed areas, though their potential for sustainable development is inhibited by overlying aquitards and limited recharge rates. Long open interval wells (LOIWs)—wells uncased through multiple hydrostratigraphic units—are present in many confined aquifer systems and can be an important mechanism for deep basin aquifers to receive flow across aquitards. LOIWs are a major control on flow in the deep Cambrian–Ordovician sandstone aquifers of the upper Midwest, USA, providing a source of artificial leakage from shallow bedrock aquifers and equilibrating head within the sandstone aquifers despite differential pumpage. Conceptualizing and quantifying this anthropogenic flow has long been a challenge for groundwater flow modellers, particularly on a regional scale. Synoptic measurements of active production wells and well completion data for northeast Illinois form the basis for a transient, head‐specified MODFLOW model that determines mass balance contributions to the region and estimates LOIW leakage to the aquifers. Using this insight, transient LOIW leakage was simulated using transiently changing KV zones in a traditional, Q‐specified MODFLOW‐USG model, a novel approach that allows the KV in a cell containing a LOIW to change transiently by use of the time‐variant materials (TVM) package. With this modification, we achieved a consistent calibration through time, averaging 19.9 m root mean squared error. This model indicates that artificial leakage via LOIWs contributed a minimum of 10–13% of total flow to the sandstone aquifers through the entire history of pumping, up to 50% of flow around 1930. Removal from storage exceeds 40% of flow during peak withdrawals, much of this flow sourced from units other than the primary sandstone aquifers via LOIWs. As such, understanding the timing and magnitude of LOIW leakage is essential for predicting future water availability in deep basin aquifers.
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit http://www.usgs.gov or call 1-888-ASK-USGSFor an overview of USGS information products, including maps, imagery, and publications, visit http: //www.usgs.gov/pubprod To order this and other USGS information products, visit
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.