We study photocurrent generation in individual suspended carbon nanotube p-n junctions using spectrally resolved scanning photocurrent microscopy. Spatial maps of the photocurrent allow us to determine the length of the p-n junction intrinsic region, as well as the role of the n-type Schottky barrier. We show that reverse-bias operation eliminates complications caused by the n-type Schottky barrier and increases the length of the intrinsic region. The absorption cross-section of the CNT is calculated using an empirically verified model, and the effect of substrate reflection is determined using FDTD simulations. We find that the room temperature photocurrent quantum yield is approximately 30% when exciting the carbon nanotube at the S44 and S55 excitonic transitions. The quantum yield value is an order of magnitude larger than previous estimates.
Carbon nanotube (CNT) photodiodes have the potential to convert light into electrical current with high efficiency. However, previous experiments have revealed the photocurrent quantum yield (PCQY) to be well below 100%. In this work, we show that the axial electric field increases the PCQY of CNT photodiodes. Under optimal conditions, our data suggest PCQY > 100%. We studied, both experimentally and theoretically, CNT photodiodes at room temperature using optical excitation corresponding to the S22, S33, and S44 exciton resonances. The axial electric field inside the pn junction was controlled using split gates that are capacitively coupled to the suspended CNT. Our results give new insight into the photocurrent generation pathways in CNTs and the field dependence and diameter dependence of PCQY.
Carbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and correlations, even at room temperature. Here, we use dielectric liquids to screen e-e interactions in individual suspended ultra-clean CNTs. Using multiple techniques, the transport gap is measured as dielectric screening is increased. Changing the dielectric environment from air to isopropanol, we observe a 25% reduction in the transport gap of semiconducting CNTs, and a 32% reduction in the band gap of narrow-gap CNTs. Additional measurements are reported in dielectric oils. Our results elucidate the nature of the transport gap in CNTs, and show that dielectric environment offers a mechanism for significant control over the transport band gap.
Suspended metallic carbon nanotubes (m-CNTs) exhibit a remarkably large transport gap that can exceed 100 meV. Both experiment and theory suggest that strong electron-electron interactions play a crucial role in generating this electronic structure. To further understand this strongly-interacting system, we have performed electronic measurements of suspended m-CNTs with known diameter and chiral angle. Spectrally-resolved photocurrent microscopy was used to determine m-CNT structure. The room-temperature electrical characteristics of 18 individualcontacted m-CNTs were compared to their respective diameter and chiral angle. At the charge neutrality point, we observe a peak in m-CNT resistance that scales exponentially with inverse diameter. Using a thermally-activated transport model, we estimate that the transport gap is 450 meV•nm/D where D is CNT diameter. We find no correlation between the gap and the CNT chiral angle. Our results add important new constraints to theories attempting to describe the electronic structure of m-CNTs.
Electronic compressibility, the second derivative of ground state energy with respect to total electron number, is a measurable quantity that reveals the interaction strength of a system and can be used to characterize the orderly crystalline lattice of electrons known as the Wigner crystal. Here, we measure the electronic compressibility of individual suspended ultraclean carbon nanotubes in the low-density Wigner crystal regime. Using lowtemperature quantum transport measurements, we determine the compressibility as a function of carrier number in nanotubes with varying band gaps. We observe two qualitatively different trends in compressibility versus carrier number, both of which can be explained using a theoretical model of a Wigner crystal that accounts for both the band gap and the confining potential experienced by charge carriers. We extract the interaction strength as a function of carrier number for individual nanotubes and show that the compressibility can be used to distinguish between strongly and weakly interacting regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.