2008. A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis. 92:215-224.
Luminous quasars at > z 5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far, these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare, and therefore, wide-field surveys are required to identify them, and multiwavelength data are required to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for thez 6 quasars presented in Bañados et al. (2014) using the Pan-STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range z 5.6 6.7 that satisfy our selection criteria. Of these quasars, 77 have been discovered with PS1, and 63 of them are newly identified in this paper. We present the composite spectra of the PS1 distant quasar sample. This sample spans a factor of ∼20 in luminosity and shows a variety of emission line properties. The number of quasars at > z 5.6 presented in this work almost doubles the previously known quasars at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples.
We present the Magellan/FIRE detection of highly ionized C IVλ1550 and O III]λ1666 in a deep infrared spectrum of the z=6.11 gravitationally lensed low-mass galaxy RXC J2248.7-4431-ID3, which has previously known Lyα. No corresponding emission is detected at the expected location of He IIλ1640. The upper limit on He II, paired with detection of O III] and C IV, constrains possible ionization scenarios. Production of C IV and O III] requires ionizing photons of 2.5-3.5 Ryd, but once in that state their multiplet emission is powered by collisional excitation at lower energies (∼0.5 Ryd). As a pure recombination line, He II emission is powered by 4 Ryd ionizing photons. The data therefore require a spectrum with significant power at 3.5 Ryd but a rapid drop toward 4.0 Ryd. This hard spectrum with a steep drop is characteristic of low-metallicity stellar populations, and less consistent with soft AGN excitation, which features more 4 Ryd photons and hence higher He II flux. The conclusions based on ratios of metal line detections to helium non-detection are strengthened if the gas metallicity is low. RXJ2248-ID3 adds to the growing handful of reionization-era galaxies with UV emission line ratios distinct from the general = z 2 3 -population in a way that suggests hard ionizing spectra that do not necessarily originate in AGNs.
Luminous distant quasars are unique probes of the high-redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral hydrogen in the IGM makes quasars beyond a redshift of z 6.5 very faint in the optical z band, thus locating quasars at higher redshifts requires large surveys that are sensitive above 1 micron. We report the discovery of three new > z 6.5 quasars, corresponding to an age of the universe of <850 Myr, selected as z-band dropouts in the Pan-STARRS1 survey. This increases the number of known > z 6.5 quasars from four to seven. The quasars have redshifts of z = 6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078 + 03.0498 with =-M 27.4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.