The R6/2 mouse model of Huntington’s disease exhibits reduced skeletal muscle ClC-1 currents. Miranda et al. investigate early stages of disease in these mice and find an early and progressive disruption of ClC-1 as well as altered muscle maturation based on myosin heavy chain isoform expression.
Huntington’s disease (HD) patients suffer from progressive and debilitating motor dysfunction for which only palliative treatment is currently available. Previously, we discovered reduced skeletal muscle Cl− channel (ClC-1) and inwardly rectifying K+ channel (Kir) currents in R6/2 HD transgenic mice. To further investigate the role of ClC-1 and Kir currents in HD skeletal muscle pathology, we measured the effect of reduced ClC-1 and Kir currents on action potential (AP) repetitive firing in R6/2 mice using a two-electrode current clamp. We found that R6/2 APs had a significantly lower peak amplitude, depolarized maximum repolarization, and prolonged decay time compared with wild type (WT). Of these differences, only the maximum repolarization was accounted for by the reduction in ClC-1 and Kir currents, indicating the presence of additional ion channel defects. We found that both KV1.5 and KV3.4 mRNA levels were significantly reduced in R6/2 skeletal muscle compared with WT, which explains the prolonged decay time of R6/2 APs. Overall, we found that APs in WT and R6/2 muscle significantly and progressively change during activity to maintain peak amplitude despite buildup of Na+ channel inactivation. Even with this resilience, the persistently reduced peak amplitude of R6/2 APs is expected to result in earlier fatigue and may help explain the motor impersistence experienced by HD patients. This work lays the foundation to link electrical changes to force generation defects in R6/2 HD mice and to examine the regulatory events controlling APs in WT muscle.
Mutations in lipin1 are suggested to be a common cause of massive rhabdomyolysis episodes in children; however, the molecular mechanisms involved in the regulation of myofiber death caused by the absence of lipin1 are not fully understood. Loss of membrane integrity is considered as an effective inducer of cell death in muscular dystrophy. In this study, we utilized a mouse line with selective homozygous lipin1 deficiency in the skeletal muscle (Lipin1
Myf5cKO
) to determine the role of compromised membrane integrity in the myofiber death in lipin1‐deficient muscles. We found that Lipin1
Myf5cKO
muscles had significantly elevated proapoptotic factors (Bax, Bak, and cleaved caspase‐9) and necroptotic proteins such as RIPK1, RIPK3, and MLKL compared with WT mice. Moreover, Lipin1
Myf5cKO
muscle had significantly higher membrane disruptions, as evidenced by increased IgG staining and elevated uptake of Evans Blue Dye (EBD) and increased serum creatine kinase activity in Lipin1
Myf5cKO
muscle fibers. EBD‐positive fibers were strongly colocalized with apoptotic or necroptotic myofibers, suggesting an association between compromised plasma membrane integrity and cell death pathways. We further show that the absence of lipin1 leads to a significant decrease in the absolute and specific muscle force (normalized to muscle mass). Our work indicates that apoptosis and necroptosis are associated with a loss of membrane integrity in Lipin1
Myf5cKO
muscle and that myofiber death and dysfunction may cause a decrease in contractile force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.