Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.
Strong-field physics, an extreme limit of light-matter interaction, is expanding into the realm of surfaces and nanostructures from its origin in atomic and molecular science. The attraction of nanostructures lies in two intimately connected features: local intensity enhancement and sub-wavelength confinement of optical fields. Local intensity enhancement facilitates access to the strong-field regime and has already sparked various applications, whereas spatial localization has the potential to generate strong-field dynamics exclusive to nanostructures. However, the observation of features unattainable in gaseous media is challenged by many-body effects and material damage, which arise under intense illumination of dense systems. Here, we non-destructively access this regime in the solid state by employing single plasmonic nanotips and few-cycle mid-infrared pulses, making use of the wavelength-dependence of the interaction, that is, the ponderomotive energy. We investigate strong-field photoelectron emission and acceleration from single nanostructures over a broad spectral range, and find kinetic energies of hundreds of electronvolts. We observe the transition to a new regime in strong-field dynamics, in which the electrons escape the nanolocalized field within a fraction of an optical half-cycle. The transition into this regime, characterized by a spatial adiabaticity parameter, would require relativistic electrons in the absence of nanostructures. These results establish new degrees of freedom for the manipulation and control of electron dynamics on femtosecond and attosecond timescales, combining optical near-fields and nanoscopic sources.
Intense multiphoton electron emission is observed from sharp (approximately 20 nm radius) metallic tips illuminated with weak 100-pJ, 7-fs light pulses. Local field enhancement, evidenced by concurrent nonlinear light generation, confines the emission to the tip apex. Electrons are emitted from a highly excited nonequilibrium carrier distribution, resulting in a marked change of the absolute electron flux and its dependence on optical power with the tip bias voltage. The strong optical nonlinearity of the electron emission allows us to image the local optical field near a metallic nanostructure with a spatial resolution of a few tens of nanometers in a novel tip-enhanced electron emission microscope.
Solitons, particle-like excitations ubiquitous in many fields of physics, have been shown to exhibit bound states akin to molecules. The formation of such temporal soliton bound states and their internal dynamics have escaped direct experimental observation. By means of an emerging time-stretch technique, we resolve the evolution of femtosecond soliton molecules in the cavity of a few-cycle mode-locked laser. We track two- and three-soliton bound states over hundreds of thousands of consecutive cavity roundtrips, identifying fixed points and periodic and aperiodic molecular orbits. A class of trajectories acquires a path-dependent geometrical phase, implying that its dynamics may be topologically protected. These findings highlight the importance of real-time detection in resolving interactions in complex nonlinear systems, including the dynamics of soliton bound states, breathers, and rogue waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.