Quantum mechanics, information theory, and relativity theory are the basic foundations of theoretical physics. The acquisition of information from a quantum system is the interface of classical and quantum physics. Essential tools for its description are Kraus matrices and positive operator valued measures (POVMs). Special relativity imposes severe restrictions on the transfer of information between distant systems. Quantum entropy is not a Lorentz covariant concept. Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory, which is necessary for a consistent description of interactions, implies a fundamental trade-off between detector reliability and localizability. General relativity produces new, counterintuitive effects, in particular when black holes (or more generally, event horizons) are involved. Most of the current concepts in quantum information theory may then require a reassessment.
Gedanken experiments help to reconcile our classical intuition with quantum mechanics and nowadays are routinely performed in the laboratory. An important open question is the quantum behavior of the controlling devices in such experiments. We propose a framework to analyze quantum-controlled experiments and illustrate it by discussing a quantum version of Wheeler's delayed-choice experiment. Using a quantum control has several consequences. First, it enables us to measure complementary phenomena with a single experimental setup, pointing to a redefinition of complementarity principle. Second, it allows us to prove there are no consistent hidden-variable theories having "particle" and "wave" as realistic properties. Finally, it shows that a photon can have a morphing behavior between particle and wave. The framework can be extended to other experiments (e.g., Bell inequality).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.