We present a novel framework for inspecting representations and encoding their formal properties. This enables us to assess and compare the informational and cognitive value of different representations for reasoning. The purpose of our framework is to automate the process of representation selection, taking into account the candidate representation's match to the problem at hand and to the user's specific cognitive profile. This requires a language for talking about representations, and methods for analysing their relative advantages. This foundational work is first to devise a computational end-to-end framework where problems, representations, and user's profiles can be described and analysed. As AI systems become ubiquitous, it is important for them to be more compatible with human reasoning, and our framework enables just that.
Mathematics and computing students learn new concepts and fortify their expertise by solving problems. The representation of a problem, be it through algebra, diagrams, or code, is key to understanding and solving it. Multiple-representation interactive environments are a promising approach, but the task of choosing an appropriate representation is largely placed on the user. We propose a new method to recommend representations based on correspondences: conceptual links between domains. Correspondences can be used to analyse, identify, and construct analogies even when the analogical target is unknown. This paper explains how correspondences build on probability theory and Gentner's structure-mapping framework; proposes rules for semi-automated correspondence discovery; and describes how correspondences can explain and construct analogies.
Representation determines how we can reason about a specific problem. Sometimes one representation helps us to find a proof more easily than others. Most current automated reasoning tools focus on reasoning within one representation. There is, therefore, a need for the development of better tools to mechanise and automate formal and logically sound changes of representation. In this paper we look at examples of representational transformations in discrete mathematics, and show how we have used tools from Isabelle's Transfer package to automate the use of these transformations in proofs. We give an overview of a general theory of transformations that we consider appropriate for thinking about the matter, and we explain how it relates to the Transfer package. We show a few reasoning tactics we developed in Isabelle to improve the use of transformations, including the automation of search in the space of representations. We present and analyse some results of the use of these tactics.
Choosing an effective representation is fundamental to the ability of the representation's user to exploit it for the intended purpose. The major contribution of this paper is to provide a novel, flexible framework, rep2rep, that can be used by AI systems to recommend effective representations. What makes an effective representation is determined by whether it expresses the necessary information, supports the execution of tasks, and reflects the user's cognitive abilities. In general, there is no single 'most effective' representation for every problem and every user, which makes it difficult to choose one from the plethora of possible representations. To address this, rep2rep includes: a domain-independent language for describing representations, algorithms that compute measures of informational suitability and overall cognitive cost, and uses these measures to recommend representations. We demonstrate the application of rep2rep in the probability domain. Importantly, our framework provides the foundations for personalised interaction with AI systems in the context of representation choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.