Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative confined in parallelly aligned nanochannels of monolithic, mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3-22 nm) and surface chemistry reveal a competition of radial and axial columnar orders. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies. For smaller channel radii our observations can semi-quantitatively be described by a Landau-de Gennes model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase boundaries are predicted to move from the channel walls to the channel centres upon cooling, and vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the scaling behavior of the transition temperatures with the channel diameter. The absence of experimental hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to the order parameter.
We explore the optical birefringence of the nematic binary mixtures 6CB1−x7CBx (0 ≤ x ≤ 1) imbibed into parallel-aligned nanochannels of mesoporous alumina and silica membranes for channel radii of 3.4 ≤ R ≤ 21.0 nm. The results are compared with the bulk behavior and analyzed with a Landau-de-Gennes model. Depending on the channel radius the nematic ordering in the cylindrical nanochannels evolves either discontinuously (subcritical regime, nematic ordering field σ < 1/2) or continuously (overcritical regime, σ > 1/2), but in both cases with a characteristic paranematic precursor behavior. The strength of the ordering field, imposed by the channel walls, and the magnitude of quenched disorder varies linearly with the mole fraction x and scales inversely proportional with R for channel radii larger than 4 nm. The critical pore radius, Rc, separating a continuous from a discontinuous paranematic-to-nematic evolution, varies linearly with x and differs negligibly between the silica and alumina membranes. We find no hints of preferred adsorption of one species at the channels walls. By contrast, a linear variation of the nematic-to-paranematic transition point TPN and of the nematic ordering field σ vs. x suggest that the binary mixtures of cyanobiphenyls 6CB and 7CB keep their homogeneous bulk stoichiometry also in nanoconfinement, at least for channel diameters larger than ∼7 nm.
We explore the nematic ordering of the rodlike liquid crystals 5CB and 6CB, embedded into parallel-aligned nanochannels in mesoporous silicon and silica membranes as a function of mean channel radius (4.7 ≤ R ≤ .3 nm), and, thus, geometrical confinement strength, by optical birefringence measurements in the infrared region. The orientational order inside the nanochannels results in an excess birefringence, which is proportional to the nematic order parameter. It evolves continuously on cooling with a precursor behavior, typical of a paranematic state at high temperatures. These observations are compared with the bulk behavior and analyzed within a phenomenological model. Such an approach indicates that the strength of the nematic ordering fields σ is beyond a critical threshold σ(c) = 1/2 that separates discontinuous from continuous paranematic-to-nematic behavior. In agreement with the predictions of the phenomenological approach, a linear dependency of σ on the inverse channel radius is found and we can infer therefrom the critical channel radii, R(c) separating continuous from discontinuous paranematic-to-isotropic behavior, for 5CB (12.1 nm) and 6CB (14.0 nm). Our analysis suggests that the tangential anchoring at the channel walls is of similar strength in mesoporous silicon and mesoporous silica membranes. A comparison with the bulk phase behavior reveals that the nematic order in nanoconfinement is significantly affected by channel wall roughness, leading to a reduction of the effective nematic ordering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.