The purpose of this study is the proof that non-concentrating solar-thermal collectors can supply the thermal energy needed to power endothermic chemical reactions such as steam reforming of alcoholic (bio-) fuels. Traditional steam reformers require the combustion of up to 50% of the primary fuel to enable the endothermic reforming reaction. Our goal is to use a selective solar absorber coating on top of a collector-reactor surrounded by vacuum insulation. For methanol reforming, a reaction temperature of 220–250°C is required for effective methanol-to-hydrogen conversion. A multilayer absorber coating (TiNOX) is used, as well as a turbomolecular pump to reach ultra-high. The collector-reactor is made of copper tubes and plates and a Cu/ZnO/Al2O3 catalyst is integrated in a porous ceramic structure towards the end of the reactor tube. The device is tested under 1000 W/m2 solar irradiation (using an ABB class solar simulator, air mass 1.5).
Numerical and experimental results show that convective and conductive heat losses are eliminated at vacuum pressures of <10−4 Torr. By reducing radiative losses through chemical polishing of the non-absorbing surfaces, the methanol-water mixture can be effectively heated to 240–250°C and converted to hydrogen-rich gas mixture. For liquid methanol-water inlet flow rates up to 1 ml/min per m2 of solar collector area can be converted to hydrogen with a methanol conversion rate above 90%.
This study will present the design and fabrication of the solar collector-reactor, its testing and optimization, and its integration into an entire hydrogen-fed Polymer Electrolyte Membrane fuel cell system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.