Abstract. For sharp quantum observables the following facts hold: (i) if we have a collection of sharp observables and each pair of them is jointly measurable, then they are jointly measurable all together; (ii) if two sharp observables are jointly measurable, then their joint observable is unique and it gives the greatest lower bound for the effects corresponding to the observables; (iii) if we have two sharp observables and their every possible two outcome partitionings are jointly measurable, then the observables themselves are jointly measurable. We show that, in general, these properties do not hold. Also some possible candidates which would accompany joint measurability and generalize these apparently useful properties are discussed.
We study scattering quantum walks on highly symmetric graphs and use the walks to solve search problems on these graphs. The particle making the walk resides on the edges of the graph, and at each time step scatters at the vertices. All of the vertices have the same scattering properties except for a subset of special vertices. The object of the search is to find a special vertex. A quantum circuit implementation of these walks is presented in which the set of special vertices is specified by a quantum oracle. We consider the complete graph, a complete bipartite graph, and an M-partite graph. In all cases, the dimension of the Hilbert space in which the time evolution of the walk takes place is small ͑between three and six͒, so the walks can be completely analyzed analytically. Such dimensional reduction is due to the fact that these graphs have large automorphism groups. We find the usual quadratic quantum speedups in all cases considered.
The existence of incompatible measurements is a fundamental phenomenon having no explanation in classical physics. Intuitively, one considers given measurements to be incompatible within a framework of a physical theory, if their simultaneous implementation on a single physical device is prohibited by the theory itself. In the mathematical language of quantum theory, measurements are described by POVMs (positive operator valued measures), and given POVMs are by definition incompatible if they cannot be obtained via coarse-graining from a single common POVM; this notion generalizes noncommutativity of projective measurements. In quantum theory, incompatibility can be regarded as a resource necessary for manifesting phenomena such as Clauser-Horne-Shimony-Holt (CHSH) Bell inequality violations or Einstein-Podolsky-Rosen (EPR) steering which do not have classical explanation. We define operational ways of quantifying this resource via the amount of added classical noise needed to render the measurements compatible, i.e., useless as a resource. In analogy to entanglement measures, we generalize this idea by introducing the concept of incompatibility measure, which is monotone in local operations. In this paper, we restrict our consideration to binary measurements, which are already sufficient to explicitly demonstrate nontrivial features of the theory. In particular, we construct a family of incompatibility monotones operationally quantifying violations of certain scaled versions of the CHSH Bell inequality, prove that they can be computed via a semidefinite program, and show how the noise-based quantities arise as special cases. We also determine maximal violations of the new inequalities, demonstrating how Tsirelson's bound appears as a special case. The resource aspect is further motivated by simple quantum protocols where our incompatibility monotones appear as relevant figures of merit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.