Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s −1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s −1 ) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
We review and present new results on the transient elastography problem, where the goal is to reconstruct shear stiffness properties using interior time and space dependent displacement measurements. We present the unique identifiability of two parameters for this inverse problem, establish that a Lipschitz continuous arrival time satisfies the eikonal equation, and present two numerical algorithms, simulation results, and a reconstruction example using a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII). One numerical algorithm uses a geometrical optics expansion and the other utilizes the arrival time surface.
In this paper, we outline two improvements to the fast sweeping method to improve the speed of the method in general and more specifically in cases where the speed is changing rapidly. The conventional wisdom is that fast sweeping works best when the speed changes slowly, and fast marching is the algorithm of choice when the speed changes rapidly. The goal here is to achieve run times for the fast sweeping method that are at least as fast, or faster, than competitive methods, e.g. fast marching, in the case where the speed is changing rapidly. The first improvement, which we call the locking method, dynamically keeps track of grid points that have either already had the solution successfully calculated at that grid point or for which the solution cannot be successfully calculated during the current iteration. These locked points can quickly be skipped over during the fast sweeping iterations, avoiding many time-consuming calculations. The second improvement, which we call the two queue method, keeps all of the unlocked points in a data structure so that the locked points no longer need to be visited at all. Unfortunately, it is not possible to insert new points into the data structure while maintaining the fast sweeping ordering without at least occasionally sorting. Instead, we segregate the grid points into those with small predicted solutions and those with large predicted solutions using two queues. We give two ways of performing this segregation. This method is a label correcting (iterative) method like the fast sweeping method, but it tends to operate near the front like the fast marching method. It is reminiscent of the threshold method for finding the shortest path on a network, [F. Glover, D. Klingman, and N. Phillips, Oper. Res., 33 (1985), pp. 65-73]. We demonstrate the numerical efficiency of the improved methods on a number of examples.
Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.