The early stages of clot formation in blood vessels involve platelet adhesion–aggregation. Although these mechanisms have been extensively studied, gaps in their understanding still persist. We have performed detailed in vitro experiments, using the well-known Impact-R device, and developed a numerical model to better describe and understand this phenomenon. Unlike previous studies, we took into account the differential role of pre-activated and non-activated platelets, as well as the three-dimensional nature of the aggregation process. Our investigation reveals that blood albumin is a major parameter limiting platelet aggregate formation in our experiment. Simulations are in very good agreement with observations and provide quantitative estimates of the adhesion and aggregation rates that are hard to measure experimentally. They also provide a value of the effective diffusion of platelets in blood subject to the shear rate produced by the Impact-R.
We propose a new numerical model to describe thrombus formation in cerebral aneurysms. This model combines CFD simulations with a set of bio-mechanical processes identified as being the most important to describe the phenomena at a large space and time scales. The hypotheses of the model are based on in vitro experiments and clinical observations. We document that we can reproduce very well the shape and volume of patient specific thrombus segmented in giant aneurysms. are co-directors of this work.
Our study suggests the existence of an SR threshold below which thrombosis will occur. Therefore, by analyzing the SR on patient specific data with CFD techniques, it may be potentially possible to predict whether or the intra-aneurysmal flow conditions, after FDS implantation, will become prothrombotic.
Red blood cells (RBCs) in pathological situations undergo biochemical and conformational changes, leading to alterations in rheology involved in cardiovascular events. The shape of RBCs in volunteers and stable and exacerbated chronic obstructive pulmonary disease (COPD) patients was analyzed. The effects of RBC spherization on platelet transport (displacement in the flow field caused by their interaction with RBCs) were studied in vitro and by numerical simulations. RBC spherization was observed in COPD patients compared with volunteers. In in vitro experiments at a shear rate of 100 s−1, treatment of RBCs with neuraminidase induced greater sphericity, which mainly affected platelet aggregates without changing aggregate size. At 400 s−1, neuraminidase treatment changes both the size of the aggregates and the number of platelet aggregates. Numerical simulations indicated that RBC spherization induces an increase of the platelet mean square displacement, which is traditionally linked to the platelet diffusion coefficient. RBCs of COPD patients are more spherical than healthy volunteers. Experimentally, RBC spherization induces increased platelet transport to the wall. Additional studies are needed to understand the link between the effect of RBCs on platelet transport and the increased cardiovascular events observed in COPD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.