This paper describes the design, planning, and successful installation of a fit-for-purpose casing patch to isolate a water producing zone, the subsequent perforation of an adjacent zone, and a gravel pack completion in the same well for the first time worldwide. The proximity of the zones and the sand control requirements made the design and planning of this job a challenging task that is detailed in this manuscript. The main producing zone in the SW-21 well watered out after few years of production. A second target was identified located just four feet below the main zone. To extend the life of the well and to add reserves from the secondary target, the upper 100% water zone had to be isolated. A fit-for-purpose, thin wall casing patch solution was designed to: allow perforation of the secondary target while maintaining patch integrity, allowing for the installation of sand control screens; and resist following gravel pack completion, by keeping the minimum recommended clearance between casing and screens, inside the minimal patch-reduced diameter. The re-completions program consisted of: 1. Successful recovery of existing gravel pack from the main producing zone and thorough wellbore cleanup. 2. Casing patch installation consisting of a 23-ft long patch to isolate the water-producing zone. In this case, a specific engineering design analysis was required to ensure that, because of the very close distances between zones, the patch would still maintain integrity during perforation of the secondary target and the resulting patch overlap. 3. Successful integrity test to confirm upper interval isolation before perforating the lower interval. 4. A precise perforating operation carried out to perforate the secondary zone. Based on engineering recommendations, some length of the installed patch was perforated to guarantee a minimum unperforated distance of casing patch between zones to guarantee patch sealing features. 5. Once perforation was successfully accomplished, a gravel pack completion—inside the casing patch reduced diameter—was executed along the new zone for sand control purposes, and the well was put into production. This paper presents the different interactions between a multidisciplinary research and development team, and completions and reservoir engineers to come up with a full solution for water isolation and sand control under such challenging conditions. For the first time in the world, a casing patch was used to isolate a water zone, and at the same time, perform a gravel pack completion inside the patch reduced diameter. Well performance, without any mechanical issues, confirms the success of the provided solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.