During human evolution, the knee adapted to the biomechanical demands of bipedalism by altering chondrocyte developmental programs. This adaptive process was likely not without deleterious consequences to health. Today, osteoarthritis occurs in 250 million people, with risk variants enriched in non-coding sequences near chondrocyte genes, loci that likely became optimized during knee evolution. We explore this relationship by epigenetically profiling joint chondrocytes, revealing ancient selection and recent constraint and drift on knee regulatory elements, which also overlap osteoarthritis variants that contribute to disease heritability by tending to modify constrained functional sequence. We propose a model whereby genetic violations to regulatory constraint, tolerated during knee development, lead to adult pathology. In support, we discover a causal enhancer variant (rs6060369) present in billions of people at a risk locus (GDF5-UQCC1), showing how it impacts mouse knee-shape and osteoarthritis. Overall, our methods link an evolutionarily novel aspect of human anatomy to its pathogenesis.
We aimed to report the first genomewide association study (GWAS) meta‐analysis of dual‐energy X‐ray absorptiometry (DXA)‐derived hip shape, which is thought to be related to the risk of both hip osteoarthritis and hip fracture. Ten hip shape modes (HSMs) were derived by statistical shape modeling using SHAPE software, from hip DXA scans in the Avon Longitudinal Study of Parents and Children (ALSPAC; adult females), TwinsUK (mixed sex), Framingham Osteoporosis Study (FOS; mixed), Osteoporotic Fractures in Men study (MrOS), and Study of Osteoporotic Fractures (SOF; females) (total N = 15,934). Associations were adjusted for age, sex, and ancestry. Five genomewide significant ( p < 5 × 10 −9 , adjusted for 10 independent outcomes) single‐nucleotide polymorphisms (SNPs) were associated with HSM1, and three SNPs with HSM2. One SNP, in high linkage disequilibrium with rs2158915 associated with HSM1, was associated with HSM5 at genomewide significance. In a look‐up of previous GWASs, three of the identified SNPs were associated with hip osteoarthritis, one with hip fracture, and five with height. Seven SNPs were within 200 kb of genes involved in endochondral bone formation, namely SOX9 , PTHrP , RUNX1 , NKX3‐2 , FGFR4 , DICER1 , and HHIP . The SNP adjacent to DICER1 also showed osteoblast cis‐regulatory activity of GSC , in which mutations have previously been reported to cause hip dysplasia. For three of the lead SNPs, SNPs in high LD ( r 2 > 0.5) were identified, which intersected with open chromatin sites as detected by ATAC‐seq performed on embryonic mouse proximal femora. In conclusion, we identified eight SNPs independently associated with hip shape, most of which were associated with height and/or mapped close to endochondral bone formation genes, consistent with a contribution of processes involved in limb growth to hip shape and pathological sequelae. These findings raise the possibility that genetic studies of hip shape might help in understanding potential pathways involved in hip osteoarthritis and hip fracture. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1, we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.