Background:The kinetics and dynamics of the C-domain of cTnI were studied. Results: Fluorescence anisotropy data show support for the fly casting model and a fourth state of thin filament activation. Conclusion: The fly casting model holds true in the thin filament, but the presence of S1 modulates the process. Significance: Our study provides information on the role of the cTnI C-domain in thin filament regulation.
During cardiac thin-filament activation, the N-domain of cardiac troponin C (N-cTnC) binds to Ca(2+) and interacts with the actomyosin inhibitory troponin I (cTnI). The interaction between N-cTnC and cTnI stabilizes the Ca(2+)-induced opening of N-cTnC and is presumed to also destabilize cTnI-actin interactions that work together with steric effects of tropomyosin to inhibit force generation. Recently, our in situ steady-state FRET measurements based on N-cTnC opening suggested that at long sarcomere length, strongly bound cross-bridges indirectly stabilize this Ca(2+)-sensitizing N-cTnC-cTnI interaction through structural effects on tropomyosin and cTnI. However, the method previously used was unable to determine whether N-cTnC opening depends on sarcomere length. In this study, we used time-resolved FRET to monitor the effects of cross-bridge state and sarcomere length on the Ca(2+)-dependent conformational behavior of N-cTnC in skinned cardiac muscle fibers. FRET donor (AEDANS) and acceptor (DDPM)-labeled double-cysteine mutant cTnC(T13C/N51C)AEDANS-DDPM was incorporated into skinned muscle fibers to monitor N-cTnC opening. To study the structural effects of sarcomere length on N-cTnC, we monitored N-cTnC opening at relaxing and saturating levels of Ca(2+) and 1.80 and 2.2-μm sarcomere length. Mg(2+)-ADP and orthovanadate were used to examine the structural effects of noncycling strong-binding and weak-binding cross-bridges, respectively. We found that the stabilizing effect of strongly bound cross-bridges on N-cTnC opening (which we interpret as transmitted through related changes in cTnI and tropomyosin) become diminished by decreases in sarcomere length. Additionally, orthovanadate blunted the effect of sarcomere length on N-cTnC conformational behavior such that weak-binding cross-bridges had no effect on N-cTnC opening at any tested [Ca(2+)] or sarcomere length. Based on our findings, we conclude that the observed sarcomere length-dependent positive feedback regulation is a key determinant in the length-dependent Ca(2+) sensitivity of myofilament activation and consequently the mechanism underlying the Frank-Starling law of the heart.
The in situ structural coupling between the cardiac troponin (cTn) Ca2+-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca2+ titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca2+-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force–Ca2+ relationship. N-cTnC opening still occurred steeply during Ca2+ titrations in the presence of 1 mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca2+-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca2+ levels, treatment with ADP•Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca2+ titrations in the presence of ADP•Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca2+ with increased Ca2+-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca2+-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI.
This paper presents a novel method for making micron-sized apertures with tapered sidewalls and nano-sized apertures. Their use in bilayer lipid membrane-based ion selective electrode design is demonstrated and compared to mesoscale bilayers and traditional PVC ion selective electrodes. Micron-sized apertures are fabricated in SU-8 photoresist films and vary in diameter from 10 to 40 microns. The tapered edges in SU-8 films are desired to enhance bilayer lipid membrane (BLM) formation and are fabricated by UV-light overexposure. Nanoapertures are made in boron diffused silicon film. The membranes are used as septa to separate two potassium chloride solutions of different concentrations. Lecithin BLMs are assembled on the apertures by ejecting lipid solution. Potassium ionophore, dibenzo-18-crown-6, is incorporated into BLMs by dissolving it in the lipid solution before membrane assembly. Voltage changes with increasing potassium ion concentrations are recorded with an A/D converter. Various ionophore concentrations in BLMs are investigated. At least a 1% concentration is needed for consistent slopes. Electrode response curves are linear over the 10−6 to 0.1 M range with a sub-Nernstian slope of 20 mV per Log concentration change. This system shows high selectivity to potassium ions over potential interfering sodium ions. BLMs on the three different aperture sizes at the meso, micro, and nano-scales all show similar linear ranges and limits of detection (LODs) as PVC ion selective membranes.
FRET was used to investigate the structural and kinetic effects that PKC phosphorylations exert on Ca2+ and myosin subfragment-1 dependent conformational transitions of the cardiac thin filament. PKC phosphorylations of cTnT were mimicked by glutamate substitution. Ca2+ and S1-induced distance changes between the central linker of cTnC and the switch region of cTnI (cTnI-Sr) were monitored in reconstituted thin filaments using steady state and time resolved FRET, while kinetics of structural transitions were determined using stopped flow. Thin filament Ca2+ sensitivity was found to be significantly blunted by the presence of the cTnT(T204E) mutant, whereas pseudo-phosphorylation at additional sites increased the Ca2+-sensitivty. The rate of Ca2+-dissociation induced structural changes was decreased in the C-terminal end of cTnI-Sr in the presence of pseudo-phosphorylations while remaining unchanged at the N-terminal end of this region. Additionally, the distance between cTnI-Sr and cTnC was decreased significantly for the triple and quadruple phosphomimetic mutants cTnT(T195E/S199E/T204E) and cTnT(T195E/S199E/T204E/T285E), which correlated with the Ca2+-sensitivity increase seen in these same mutants. We conclude that significant changes in thin filament Ca2+-sensitivity, structure and kinetics are brought about through PKC phosphorylation of cTnT. These changes can either decrease or increase Ca2+-sensitivity and likely play an important role in cardiac regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.