Selective electron beam melting of Ti-6Al-4V is a promising additive manufacturing process to produce complex parts layer-by-layer additively. The quality and dimensional accuracy of the produced parts depend on various process parameters and their interactions. In the present contribution, the lifetime, width and depth of the pools of molten powder material are analyzed for different beam powers, scan speeds and line energies in experiments and simulations. In the experiments, thin-walled structures are built with an ARCAM AB A2 selective electron beam melting machine and for the simulations a thermal finite element simulation tool is used, which is developed by the authors to simulate the temperature distribution in the selective electron beam melting process. The experimental and numerical results are compared and a good agreement is observed. The lifetime of the melt pool increases linearly with the line energy, whereby the melt pool dimensions show a nonlinear relation with the line energy.
The present contribution is concerned with the macroscopic modelling of the selective beam melting process by using finite elements. In this context the objective is to detail a continuum model to describe the process. Furthermore two different solution approaches are applied to the model and compared in terms of performance. An adaptive mesh refinement strategy is also demonstrated to increase the quality of the solution in the vicinity of the beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.