Calcium sulfide (CaS) nanoparticles are cadmium free fluorescent nanostructures with potential applications in nanomedicine and photovoltaic cells. We report on the synthesis and optical properties of CaS nanoparticles prepared by the reaction of Ca(CH3CO2)2 and DMSO in a microwave. The absorption spectra of CaS prepared from this method consists of a well-defined peak in the UV and a long wavelength tail that extends above 700 nm. Emission bands centered at around 500 nm with a long wavelength tail that extends above 600 nm are observed upon excitation at 405 nm. STM measurements reveal the formation of CaS nanoparticles with an average diameter of (3.2 ± 0.7) nm. The direct and indirect band gaps are estimated to be (0.403 ± 0.003) eV and (4.135 ± 0.006) eV, respectively. Theoretical calculations on small CaS clusters are used to establish the physical properties of calcium sulfide nanoclusters, including the optical absorption spectra. Unique to CaS nanostructures is the absorption of light at wavelengths longer that in the bulk material instead of the blue shift associated with quantum confinement effects in semiconductors. Indeed, the strong absorption bands in the visible region of the spectra of the CaS nanostructures do not have a counterpart in the gas or solid phases. The optical absorption spectra are proposed to have a significant contribution from indirect transitions which are discussed in terms of the dispersion of the phonon frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.