Patients with SPS have an increased risk of CRC, although lower than previously published. Close colonoscopy surveillance in experienced centres show a low risk of developing CRC (1.9% in 5 years). Specific polyp features (SSA/P histology, proximal location and presence of high-grade dysplasia) should be used to guide clinical management.
BackgroundRisk prediction models for colorectal cancer (CRC) detection in symptomatic patients based on available biomarkers may improve CRC diagnosis. Our aim was to develop, compare with the NICE referral criteria and externally validate a CRC prediction model, COLONPREDICT, based on clinical and laboratory variables.MethodsThis prospective cross-sectional study included consecutive patients with gastrointestinal symptoms referred for colonoscopy between March 2012 and September 2013 in a derivation cohort and between March 2014 and March 2015 in a validation cohort. In the derivation cohort, we assessed symptoms and the NICE referral criteria, and determined levels of faecal haemoglobin and calprotectin, blood haemoglobin, and serum carcinoembryonic antigen before performing an anorectal examination and a colonoscopy. A multivariate logistic regression analysis was used to develop the model with diagnostic accuracy with CRC detection as the main outcome.ResultsWe included 1572 patients in the derivation cohort and 1481 in the validation cohorts, with a 13.6 % and 9.1 % CRC prevalence respectively. The final prediction model included 11 variables: age (years) (odds ratio [OR] 1.04, 95 % confidence interval [CI] 1.02–1.06), male gender (OR 2.2, 95 % CI 1.5–3.4), faecal haemoglobin ≥20 μg/g (OR 17.0, 95 % CI 10.0–28.6), blood haemoglobin <10 g/dL (OR 4.8, 95 % CI 2.2–10.3), blood haemoglobin 10–12 g/dL (OR 1.8, 95 % CI 1.1–3.0), carcinoembryonic antigen ≥3 ng/mL (OR 4.5, 95 % CI 3.0–6.8), acetylsalicylic acid treatment (OR 0.4, 95 % CI 0.2–0.7), previous colonoscopy (OR 0.1, 95 % CI 0.06–0.2), rectal mass (OR 14.8, 95 % CI 5.3–41.0), benign anorectal lesion (OR 0.3, 95 % CI 0.2–0.4), rectal bleeding (OR 2.2, 95 % CI 1.4–3.4) and change in bowel habit (OR 1.7, 95 % CI 1.1–2.5). The area under the curve (AUC) was 0.92 (95 % CI 0.91–0.94), higher than the NICE referral criteria (AUC 0.59, 95 % CI 0.55–0.63; p < 0.001). On the basis of the thresholds with 90 % (5.6) and 99 % (3.5) sensitivity, we divided the derivation cohort into three risk groups for CRC detection: high (30.9 % of the cohort, positive predictive value [PPV] 40.7 %, 95 % CI 36.7–45.9 %), intermediate (29.5 %, PPV 4.4 %, 95 % CI 2.8–6.8 %) and low (39.5 %, PPV 0.2 %, 95 % CI 0.0–1.1 %). The discriminatory ability was equivalent in the validation cohort (AUC 0.92, 95 % CI 0.90–0.94; p = 0.7).ConclusionsCOLONPREDICT is a highly accurate prediction model for CRC detection.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-016-0668-5) contains supplementary material, which is available to authorized users.
Prediction models for colorectal cancer (CRC) detection in symptomatic patients, based on easily obtainable variables such as fecal haemoglobin concentration (f-Hb), age and sex, may simplify CRC diagnosis. We developed, and then externally validated, a multivariable prediction model, the FAST Score, with data from five diagnostic test accuracy studies that evaluated quantitative fecal immunochemical tests in symptomatic patients referred for colonoscopy. The diagnostic accuracy of the Score in derivation and validation cohorts was compared statistically with the area under the curve (AUC) and the Chi-square test. 1,572 and 3,976 patients were examined in these cohorts, respectively. For CRC, the odds ratio (OR) of the variables included in the Score were: age (years): 1.03 (95% confidence intervals (CI): 1.02-1.05), male sex: 1.6 (95% CI: 1.1-2.3) and f-Hb (0-<20 µg Hb/g feces): 2.0 (95% CI: 0.7-5.5), (20-<200 µg Hb/g): 16.8 (95% CI: 6.6-42.0), ≥200 µg Hb/g: 65.7 (95% CI: 26.3-164.1). The AUC for CRC detection was 0.88 (95% CI: 0.85-0.90) in the derivation and 0.91 (95% CI: 0.90-093; p = 0.005) in the validation cohort. At the two Score thresholds with 90% (4.50) and 99% (2.12) sensitivity for CRC, the Score had equivalent sensitivity, although the specificity was higher in the validation cohort (p < 0.001). Accordingly, the validation cohort was divided into three groups: high (21.4% of the cohort, positive predictive value-PPV: 21.7%), intermediate (59.8%, PPV: 0.9%) and low (18.8%, PPV: 0.0%) risk for CRC. The FAST Score is an easy to calculate prediction tool, highly accurate for CRC detection in symptomatic patients.
BACKGROUND: Lynch syndrome (LS) is characterized by mismatch repair (MMR) deficiency. However, there is a group of patients where LS is suspected because of MMR deficiency but there is no germinal mutation in MMR genes.These patients are known as Lynch-like syndrome (LLS) and there is no consensus about their management. The aim of this study is to describe a large series of LLS patients and to analyze if there are clinical, pathology or molecular differences in patients with suspected hereditary or sporadic origin.METHODS: Patients with colorectal cancer (CRC) were included in a national registry when their tumors show immunochemical loss of MSH2, MSH6, PMS2 or loss of MLH1 with BRAF-wild type and/or no MLH1 methylation and absence of pathogenic mutation in these genes. Demographic, clinical and pathological variables, as well as family history of neoplasms were registered. RESULTS: We included 160 patients with LLS. Mean age at diagnosis of CRC was 55 years. A total of 66 patients were female (41%). Amsterdam I and II criteria were fulfilled by 11%, revised Bethesda guidelines by 65% of cases and 24% were diagnosed because of universal screening. There were no differences in sex, indication for colonoscopy, immunochemistry, pathology findings or personal history of CRC or other LS related tumors between patients fulfilling Amsterdam or Bethesda guidelines and patients diagnosed because of universal screening of LS without family history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.