A novel ultrasound technique was developed for detecting the distribution of stiffness in biological tissue. The method, which we call 'dynamic elastometry,' involves applying a low-frequency vibration (< or = 5 Hz) to the tissue and measuring the resulting velocity pattern within the sample using Doppler spectral analysis. Based upon the velocity differences, an elastically stiff region can be differentiated from surrounding soft tissue. Dynamic elastometry was used to both detect and quantify lesions produced by high-intensity focused ultrasound (HIFU) in porcine livers. Measurements of the lesion position and length agreed well with independent geometric measurements. The mean and standard deviation of the differences between the two types of measurement were -0.01 cm and 0.10 cm for lesion position, and -0.05 cm and 0.12 cm for lesion length, respectively. The relative stiffness between lesions and normal liver tissue was estimated by the velocity gradient ratio. Results were compared with the Young's modulus ratios between lesion and normal liver tissue obtained from mechanical measurement. The dynamic elastometric estimates had a strong linear correlation with the mechanical measurements (r = 0.93) but were smaller than the latter by 26%.
Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.