This paper is devoted to the derivation of an exact analytical expression of the bit error rate for chaos-based DS-CDMA systems. For the studied transmission system, we suppose that synchronization is achieved perfectly, coherent reception is considered, and an Additive White Gaussian Noise channel (AWGN) is assumed. In the first part of the paper, performance of a mono-user system with different chaotic sequences is evaluated and compared in terms of the error probability. This comparison is realized thanks to the probability density function of the bit energy of a chaotic sequence. The bit error rate can be easily derived by numerical integration. In some particular cases, for certain chaotic sequences with known probability density function of bit energy, we propose an analytical expression of the bit error. In the second part of the paper, the performance of a chaos-based DS-CDMA system is evaluated in the multi-user case. A general conclusion is that probability density function of chaos bit energy, for a given spreading factor, can give a clear idea about how to choose a "good" chaotic sequence for improving the performance of the chaos-based CDMA system.Keywords Chaos-based DS-CDMA · Energy distribution · Bit error rate · Multi-user interference
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.