After the discovery of carbon nanotubes (CNTs) by Sumio Iijima in 1991, several methods have been developed to synthesize them. High-temperature techniques, such as laser ablation and arc discharge, are now replaced by a low-temperature technique like chemical vapor deposition (CVD). Floating catalyst chemical vapor deposition (FCCVD) method is extensively researched due to its ease of fabrication, mass production at low cost and high purity output. The motive of this paper is to discuss the influence of three major factors on the growth of CNTs using the FCCVD method, which can help us better understand the process of FCCVD as well as the potential challenges faced by this method.
Decades of extensive research have matured the development of carbon nanotubes (CNTs). Still, the properties of macroscale assemblages, such as sheets of carbon nanotubes, are not good enough to satisfy many applications. This paper gives an overview of different approaches to synthesize CNTs and then focuses on the floating catalyst method to form CNT sheets. A method is also described in this paper to modify the properties of macroscale carbon nanotube sheets produced by the floating catalyst method. The CNT sheet is modified to form a carbon nanotube hybrid (CNTH) sheet by incorporating metal, ceramic, or other types of nanoparticles into the high-temperature synthesis process to improve and customize the properties of the traditional nanotube sheet. This paper also discusses manufacturing obstacles and the possible commercial applications of the CNT sheet and CNTH sheet. Manufacturing problems include the difficulty of injecting dry nanoparticles uniformly, increasing the output of the process to reduce cost, and safely handling the hydrogen gas generated in the process. Applications for CNT sheet include air and water filtering, energy storage applications, and compositing CNTH sheets to produce apparel with anti-microbial properties to protect the population from infectious diseases. The paper also provides an outlook towards large scale commercialization of CNT material.
The carbon nanotube (CNT) is celebrated for its electrothermal property, which indicates the capability of a material to transform electrical energy into heat due to the Joule effect. The CNT nanostructure itself, as a one-dimensional material, limits the electron conduction path, thereby creating a unique heating phenomenon. In this work, we explore the possible correlation between CNT alignment in sheets and heating performance. The alignment of carbon nanotubes is induced by immersion and stretching in chlorosulfonic acid (CSA) solution. The developed CSA-stretched CNT sheet demonstrated excellent heating performance with a fast response rate of 6.5 °C/s and reached 180 °C in less than 30 s under a low voltage of 2.5 V. The heating profile of the stretched CNT sheet remained stable after bending and twisting movements, making it a suitable heating material for wearable devices, heatable smart windows, and in de-icing or defogging applications. The specific strength and specific conductance of the CSA-stretched CNT sheet also increased five- and two-fold, respectively, in comparison to the pristine CNT sheet.
Particulate Matter (PM) has become an important source of air pollution. We proposed a flexible and lightweight carbon nanotube (CNT) composite air filter for PM removal. The developed CNT filtering layers were fabricated using a floating catalyst chemical vapor deposition (FC-CVD) synthesis process and then combined with conventional filter fabrics to make a composite air filter. Filtration performance for CNT filtering layer alone and composited with other conventional filter fabrics for particles size 0.3 μm to 2.5 μm was investigated in this study. The CNT composite filter is highly hydrophobic, making it suitable for humid environments. The CNT composite filter with two layers of tissue CNT performed best and achieved a filtration efficiency over 90% with a modest pressure drop of ~290 Pa for a particle size of 2.5 μm. This CNT composite filter was tested over multiple cycles to ensure its reusability. The developed filter is very light weight and flexible and can be incorporated into textiles for wearable applications or used as a room filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.