This paper considers the use of a simple posterior sampling algorithm to balance between exploration and exploitation when learning to optimize actions such as in multiarmed bandit problems. The algorithm, also known as Thompson Sampling and as probability matching, offers significant advantages over the popular upper confidence bound (UCB) approach, and can be applied to problems with finite or infinite action spaces and complicated relationships among action rewards. We make two theoretical contributions. The first establishes a connection between posterior sampling and UCB algorithms. This result lets us convert regret bounds developed for UCB algorithms into Bayesian regret bounds for posterior sampling. Our second theoretical contribution is a Bayesian regret bound for posterior sampling that applies broadly and can be specialized to many model classes. This bound depends on a new notion we refer to as the eluder dimension, which measures the degree of dependence among action rewards. Compared to UCB algorithm Bayesian regret bounds for specific model classes, our general bound matches the best available for linear models and is stronger than the best available for generalized linear models. Further, our analysis provides insight into performance advantages of posterior sampling, which are highlighted through simulation results that demonstrate performance surpassing recently proposed UCB algorithms.
Temporal difference learning (TD) is a simple iterative algorithm widely used for policy evaluation in Markov reward processes. Bhandari et al. prove finite time convergence rates for TD learning with linear function approximation. The analysis follows using a key insight that establishes rigorous connections between TD updates and those of online gradient descent. In a model where observations are corrupted by i.i.d. noise, convergence results for TD follow by essentially mirroring the analysis for online gradient descent. Using an information-theoretic technique, the authors also provide results for the case when TD is applied to a single Markovian data stream where the algorithm’s updates can be severely biased. Their analysis seamlessly extends to the study of TD learning with eligibility traces and Q-learning for high-dimensional optimal stopping problems.
Abstract. We propose information-directed sampling-a new approach to online optimization problems in which a decision maker must balance between exploration and exploitation while learning from partial feedback. Each action is sampled in a manner that minimizes the ratio between squared expected single-period regret and a measure of information gain: the mutual information between the optimal action and the next observation.We establish an expected regret bound for information-directed sampling that applies across a very general class of models and scales with the entropy of the optimal action distribution. We illustrate through simple analytic examples how information-directed sampling accounts for kinds of information that alternative approaches do not adequately address and that this can lead to dramatic performance gains. For the widely studied Bernoulli, Gaussian, and linear bandit problems, we demonstrate state-of-the-art simulation performance.
Thompson sampling is an algorithm for online decision problems where actions are taken sequentially in a manner that must balance between exploiting what is known to maximize immediate performance and investing to accumulate new information that may improve future performance. The algorithm addresses a broad range of problems in a computationally efficient manner and is therefore enjoying wide use. This tutorial covers the algorithm and its application, illustrating concepts through a range of examples, including Bernoulli bandit problems, shortest path problems, product assortment, recommendation, active learning with neural networks, and reinforcement learning in Markov decision processes. Most of these problems involve complex information structures, where information revealed by taking an action informs beliefs about other actions. We will also discuss when and why Thompson sampling is or is not effective and relations to alternative algorithms.
This paper considers the optimal adaptive allocation of measurement effort for identifying the best among a finite set of options or designs. An experimenter sequentially chooses designs to measure and observes noisy signals of their quality with the goal of confidently identifying the best design after a small number of measurements. This paper proposes three simple and intuitive Bayesian algorithms for adaptively allocating measurement effort, and formalizes a sense in which these seemingly naive rules are the best possible. One proposal is top-two probability sampling, which computes the two designs with the highest posterior probability of being optimal, and then randomizes to select among these two. One is a variant of top-two sampling which considers not only the probability a design is optimal, but the expected amount by which its quality exceeds that of other designs. The final algorithm is a modified version of Thompson sampling that is tailored for identifying the best design.We prove that these simple algorithms satisfy a sharp optimality property. In a frequentist setting where the true quality of the designs is fixed, one hopes the posterior definitively identifies the optimal design, in the sense that that the posterior probability assigned to the event that some other design is optimal converges to zero as measurements are collected. We show that under the proposed algorithms this convergence occurs at an exponential rate, and the corresponding exponent is the best possible among all allocation rules. It should be highlighted that the proposed algorithms depend on a single tuning parameter, which determines the probability used when randomizing among the top-two designs. Attaining the optimal rate of posterior convergence requires either that this parameter is set optimally or is tuned adaptively toward the optimal value. The paper goes further, characterizing the exponent attained on any problem instance and for any value of the tunable parameter. This exponent is interpreted as being optimal among a constrained class of allocation rules. Finally, considerable robustness to this parameter is established through numerical experiments and theoretical results. When this parameter is set to 1/2, the exponent attained is within a factor of 2 of best possible across all problem instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.