Dengan adanya kebutuhan akan informasi dari data yang digunakan dalam kegiatan bisnis, maka perlu dilakukan eksplorasi data untuk mengetahui informasi tersebut. Dalam proses eksplorasi data dapat dilakukan dengan menggunakan grafik, sedangkan dalam penggunaan grafik tersebut dapat berguna untuk mengidentifikasi pola-pola yang ada pada data. Penelitian ini dilakukan dengan tujuan untuk memperoleh informasi dari hasil eksplorasi data dengan menggunakan data penjualan barang elektronik dalam memperoleh informasi sebagai bahan pertimbangan dalam merencanakan strategi peningkatan usaha. Bahwa dalam penjualan barang elektronik dari bulan januari 2019 – desember 2019 yang paling banyak terjual adalah baterai AAA(4 packs) sedangkan barang yang paling sedikit terjual adalah LG Dryer. Dan untuk produk elektronik yang paling mahal terjual sepanjang bulan januari – desember adalah Macbook Pro Laptop dengan kisaran harga sebesar 1750 dolar.
Advertising is a very effective way for product marketing, this method is often used to disseminate product information to be marketed. Errors in the analysis of products to be marketed resulted in significant losses to the company due to errors in the exploration of Big Data processing. Big data is described as large-scale data that can be presented, processed and analyzed using existing technologies, methods and theories. Therefore, an assessment of the big data of video game operators that is in demand by the market is carried out to determine the highest and lowest sales of video games using the Exploratory Data Analysis method so that a company can determine the games to be promoted and produced. The results obtained in this study that have the highest and lowest sales of video games in the global market by genre are action at 1745.27 and strategy at 174.5. And for sales by platform, PS2 is 1255.64 and PCFX is 0.03. With this method, video game sales can be presented graphically, making it easier for companies to determine which games to market and promote small game sales.
Agriculture is one of the main sectors in Karo Regency, North Sumatra. One of the commodities produced by farmers in Karo Regency is carrot. The inability of farmers to control soil moisture may cause crop damage to a lack of productivity. This research aims to create a monitoring & control system that is integrated with the website to make it easier for farmers to prevent problems that occur. The method used in the research is the design, installation, monitoring, and deactivation. The results obtained from this research are that farmers can now monitor the field conditions in real-time using a web-based monitoring & control system.
With so many airlines competing with each other, airlines are competing to become the consumer/market's main choice, but to achieve this, there is no airline strategy that can predict the price of airline tickets according to market needs. To meet the needs of airlines, we need a way to determine the price of airline tickets according to market needs with the help of the influence of technology and information. This research method was carried out using Google Collaboratory as a media to create a data model automated machine learning (AutoML) with the Random Forest, Logistic Regression and Gradient Boosting Regressor algorithms. In this study, the model that produced the highest R2 value and the lowest RMSE was a random forest with an R2 value of 83.91% and an RMSE of $175.9. However, from the three models, Random Forest got a change in accuracy of 1.96% to 85.87. To assist in predicting the determination of flight fares, airline companies can more easily and be alert to determine flight fares that are in accordance with the market. Therefore, Random Forest can be declared better than Logistic Regression and Gradient Boosting models. The Random Forest model that has been created can be used to predict in real-time using Machine Learning.
Seiring dengan bertumbuhnya tingkat aktivitas dan bisnis, mobil kini menjadi salah satu kebutuhan masyarakat. Dengan meningkatnya minat masyarakat terhadap mobil bekas, banyak orang berencana untuk memulai bisnis showroom mobil bekas. Masalah yang sering dihadapi pengusaha showroom adalah penetapan harga mobil bekas dengan tepat. Salah satu cara untuk melakukan prediksi harga adalah menggunakan metode Machine Learning. Untuk membuat prediksi harga yang lebih akurat dan memiliki nilai akurasi yang lebih tinggi, penelitian ini bertujuan untuk membuat sebuah model machine learning menggunakan algoritma regressi dengan bantuan hyper-parameter tuning untuk meningkatkan tingkat akurasi dari model yang dibuat dengan konfigurasi default. Model Machine Learning yang dibuat memiliki nilai yang berbeda, namun pada penelitian ini dipakai model Gradient Boost Regression yang memiliki nilai akurasi model sebesar 97% (setelah tuning) untuk melakukan prediksi. Dalam pencobaan prediksi, didapat nilai akurasi prediksi sebesar 80% dari 5 percobaan yang telah dilakukan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.