Purpose Our purposes are to compare the accuracy of RaySearch's analytical pencil beam (APB) and Monte Carlo (MC) algorithms for clinical proton therapy and to present clinical validation data using a novel animal tissue lung phantom. Methods We constructed a realistic lung phantom composed of a rack of lamb resting on a stack of rectangular natural cork slabs simulating lung tissue. The tumor was simulated using 70% lean ground lamb meat inserted in a spherical hole with diameter 40 ± 5 mm carved into the cork slabs. A single‐field plan using an anterior beam and a two‐field plan using two anterior‐oblique beams were delivered to the phantom. Ion chamber array measurements were taken medial and distal to the tumor. Measured doses were compared with calculated RayStation APB and MC calculated doses. Results Our lung phantom enabled measurements with the MatriXX PT at multiple depths in the phantom. Using the MC calculations, the 3%/3 mm gamma index pass rates, comparing measured with calculated doses, for the distal planes were 74.5% and 85.3% for the APB and 99.1% and 92% for the MC algorithms. The measured data revealed up to 46% and 30% underdosing within the distal regions of the target volume for the single and the two field plans when APB calculations are used. These discrepancies reduced to less than 18% and 7% respectively using the MC calculations. Conclusions RaySearch Laboratories' Monte Carlo dose calculation algorithm is superior to the pencil‐beam algorithm for lung targets. Clinicians relying on the analytical pencil‐beam algorithm should be aware of its pitfalls for this site and verify dose prior to delivery. We conclude that the RayStation MC algorithm is reliable and more accurate than the APB algorithm for lung targets and therefore should be used to plan proton therapy for patients with lung cancer.
For stereotactic radiosurgery (SRS), accurate evaluation of dose-volume metrics for small structures is necessary. The purpose of this study was to compare the DVH metric capabilities of five commercially available SRS DVH analysis tools (Eclipse, Elements, Raystation, MIM, and Velocity). Methods: DICOM RTdose and RTstructure set files created using MATLAB were imported and evaluated in each of the tools. Each structure set consisted of 50 randomly placed spherical targets. The dose distributions were created on a 1-mm grid using an analytic model such that the dose-volume metrics of the spheres were known. Structure sets were created for 3, 5, 7, 10, 15, and 20 mm diameter spheres. The reported structure volume, V100% [cc], and V50% [cc], and the RTOG conformity index and Paddick Gradient Index, were compared with the analytical values. Results: The average difference and range across all evaluated target sizes for the reported structure volume was − 4.
PurposeOur purposes are to compare the accuracy of RaySearch's analytical pencil beam (APB) and Monte Carlo (MC) algorithms for clinical proton therapy and to present clinical validation data using a novel animal tissue lung phantom.MethodsWe constructed a realistic lung phantom composed of a rack of lamb resting on a stack of rectangular natural cork slabs simulating lung tissue. The tumor was simulated using 70% lean ground lamb meat inserted in a spherical hole with diameter 40 ± 5 mm carved into the cork slabs. A single‐field plan using an anterior beam and a two‐field plan using two anterior‐oblique beams were delivered to the phantom. Ion chamber array measurements were taken medial and distal to the tumor. Measured doses were compared with calculated RayStation APB and MC calculated doses.ResultsOur lung phantom enabled measurements with the MatriXX PT at multiple depths in the phantom. Using the MC calculations, the 3%/3 mm gamma index pass rates, comparing measured with calculated doses, for the distal planes were 74.5% and 85.3% for the APB and 99.1% and 92% for the MC algorithms. The measured data revealed up to 46% and 30% underdosing within the distal regions of the target volume for the single and the two field plans when APB calculations are used. These discrepancies reduced to less than 18% and 7% respectively using the MC calculations.ConclusionsRaySearch Laboratories' Monte Carlo dose calculation algorithm is superior to the pencil‐beam algorithm for lung targets. Clinicians relying on the analytical pencil‐beam algorithm should be aware of its pitfalls for this site and verify dose prior to delivery. We conclude that the RayStation MC algorithm is reliable and more accurate than the APB algorithm for lung targets and therefore should be used to plan proton therapy for patients with lung cancer.
PurposeThis observational study investigates the influence of interfractional motion on clinical target volume (CTV) coverage, planning target volume (PTV) margins, and rectum tissue sparing in carbon ion radiation therapy (CIRT). It reports dose coverage to target structures and organs at risk in the presence of interfractional motion, investigates rectal tissue sparing, and provides recommendations for lowering the rate of toxicity. We also propose probabilistic DVH based on cone-beam computed tomography (CBCT) table shifts from photon therapy for consideration in bone-matching CIRT treatment planning to represent probable dose to our CIRT patient population.MethodsAt Gunma University Hospital intensity-modulated x-ray therapy (IMXT, aka IMRT) prostate cancer patients are positioned on a table which is shifted twice based on CBCT to align bones and then align prostate tissue to isocenter. These shifts thereby contain interfractional motion. A total of 1306 such table shifts from 85 patients were collected. Normal probability distributions were fit to the difference between bone-matching and prostate-matching CBCT-to-planning CT table shifts (i.e. interfractional motion). Between 2011 and 2016 CIRT prostate patients were treated with three beams to PTV1 (lateral-opposing and anterior) one per day for 9 fractions and two beams for a boost PTV2 (lateral-opposing) one per day for 7 fractions for a prescribed total of 57.6 Gy(RBE) as follows: PTV1 extends the prostate contour by 10/10, 5/10, 6/6 mm in the right/left, posterior/anterior, and superior/inferior directions, respectively, and the proximal seminal vesicles contour by 5 mm superiorly and inferiorly, 3 mm right and left. PTV2 reduces PTV1 posteriorly along a straight line to exclude the rectum and reduces the superior and inferior margins by 6 mm. Probable interfractional motion for 40 patients was simulated using each patient’s own beam data as follows: The previously fit normal probability distributions were randomly sampled 2000 times per patient, and the five beams were shifted and summed with the same relative weighting as in the 16-fraction regimen. The resulting dose distribution was then scaled back down by 16/2000 to match the prescribed number of fractions. We then analyzed the resulting doses to contoured structures.ResultsProbable dose to rectum is substantially less than planned: For example, mean+-standard deviation D2% for planned and probable DVH is 51+-1.9 and 45+-2.4, respectively. Cumulative DVH show mean CTV fraction receiving a given probable dose is less than the mean fraction receiving the corresponding planned dose for doses larger than 52 Gy(RBE), up to 19% less at 57.4 Gy(RBE). Our PTV1 margins generally cover 95% of interfractional motion but seminal vesicles and inferior prostate receive less dose than planned due to insufficient PTV2 margins.ConclusionAssuming rigidly shifting interfractional motion around the prostate region and neglecting minor changes in soft tissue stopping power, interfractional motion resulted in target un...
Knowledge of normalized SKR is a necessary to calculate scatter dose accurately. We have developed an empirical model to calculate the normalized SKR to be used for clinical (scatter) dose calculation and consequently improve dose calculation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.