To learn more about the movement patterns of bigeye tuna (Thunnus obesus), we deployed archival tags on 87 fish ranging in fork length from 50 to 154 cm. Thirteen fish were recaptured, from which 11 archival tags were returned, representing in aggregate 943 days‐at‐liberty. We successfully retrieved data from 10 tags, representing 474 days in aggregate. The largest fish recaptured was 44.5 kg [131 cm fork length (FL)] and the smallest 2.8 kg (52 cm). The deepest descent recorded was 817 m, the coldest temperature visited 4.7°C, and minimum oxygen level reached ∼1 mL L−1. Fish spent little time at depths where water temperatures were below 7°C and oxygen levels less than ∼2 mL L−1. Five fish were recaptured near the offshore weather buoy where they were tagged. Based on vertical movement patterns, it appeared that all stayed immediately associated with the buoy for up to 34 days. During this time they remained primarily in the uniform temperature surface layer (i.e. above 100 m). In contrast, fish not associated with a floating object showed the W‐shaped vertical movement patterns during the day characteristic of bigeye tuna (i.e. descending to ∼300–500 m and then returning regularly to the surface layer). Four fish were tagged and subsequently recaptured near Cross Seamount up to 76 days later. These fish exhibited vertical movement patterns similar to, but less regular than, those of fish not associated with any structure. Bigeye tuna appear to follow the diel vertical movements of the deep sound scattering layer (SSL) organisms and thus to exploit them effectively as a prey resource. Average night‐time depth was correlated with lunar illumination, a behaviour which mimics movements of the SSL.
Abstract:We tested the ability of archival tags and their associated algorithms to estimate geographical position based on ambient light intensity by attaching six tags (three tags each from Northwest Marine Technologies [NMT] and Wildlife Computers [WC]) at different depths to a stationary mooring line in the Pacific Ocean (approx. 166º42'W, 24º00'N), for approximately one year (29-Aug-98 to 16-Aug-99). Upon retrieval, one tag each from the two vendors had malfunctioned: from these no data (NMT) or only partial data (WC) could be downloaded. An algorithm onboard the NMT tag automatically calculated geographical positions. For the WC tags, three different algorithms were used to estimate geographical positions from the recorded light intensity data. Estimates of longitude from all tags were significantly less variable than those for latitude. The mean absolute error for longitude estimates from the NMT tags ranged from 0.29 to 0.35º, and for the WC tags from 0.13 to 0.25º. The mean absolute error in latitude estimates from the NMT tags ranged from 1.5 to 5.5º, and for the WC tags from 0.78 to 3.50º. Ambient weather conditions and water clarity will obviously introduce errors into any geoposition algo-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.