BackgroundThe major surface glycoprotein (Msg) of Pneumocystis is encoded by approximately 50 to 80 unique but related genes. Msg diversity may represent a mechanism for immune escape from host T cell responses. We examined splenic T cell proliferative and cytokine as well as serum antibody responses to recombinant and native Pneumocystis antigens in immunized or Pneumocystis-infected mice. In addition, immune responses were examined in 5 healthy humans.ResultsProliferative responses to each of two recombinant Msg variant proteins were seen in mice immunized with either recombinant protein, but no proliferation to these antigens was seen in mice immunized with crude Pneumocystis antigens or in mice that had cleared infection, although the latter animals demonstrated proliferative responses to crude Pneumocystis antigens and native Msg. IL-17 and MCP-3 were produced in previously infected animals in response to the same antigens, but not to recombinant antigens. Antibody responses to the recombinant P. murina Msg variant proteins were seen in all groups of animals, demonstrating that all groups were exposed to and mounted immune responses to Msg. No human PBMC samples proliferated following stimulation with P. jirovecii Msg, while antibody responses were detected in sera from 4 of 5 samples.ConclusionsCross-reactive antibody responses to Msg variants are common, while cross-reactive T cell responses are uncommon; these results support the hypothesis that Pneumocystis utilizes switching of Msg variant expression to avoid host T cell responses.
Electromagnetic phenomena are sometimes associated with seismic events, but earthquake prediction using seismic electric signals (SES) has not been seriously considered since the early 1990s. There are several causes: (1) false alarms that have created panics in Greece, and (2) a strong critique of the Varotsos-Alexopoulos-Nomicos (VAN) method used there. An updated VAN method that includes time series analysis has made successful medium-range predictions, and short-range predictions when coupled with seismic time series analysis. Four types of potential mechanisms to create precursory SES relying on deformation effects, temperature effects, ore-mineral movement or groundwater variation are reviewed. Data relevant to each are insufficient to favor a single mechanism. Records of the number of false positive and missed events for an updated VAN method have not been well maintained. False positives appear to be abundant and render the method unusable. Co-seismic groundwater fluctuations are addressed, and two novel hypotheses of earthquake trigger mechanism are also presented: ionospherically induced electric (and resultant magnetic) fields to weaken rock thereby causing failure; and volatiles liberated from minerals additionally promoting rock failure. Recommendations for further study are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.