Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
BackgroundSepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE.MethodsIntraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/− mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/− mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability.ResultsHeterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/− mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/− cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/− mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability.ConclusionsThese data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption.Electronic supplementary materialThe online version of this article (10.1186/s12974-019-1575-4) contains supplementary material, which is available to authorized users.
BackgroundPolymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein that regulates vascular extracellular matrix composition and matrix metalloproteinase (MMP) activity. The blood-brain barrier (BBB) is a dynamic system assembled by endothelial cells, basal lamina, and perivascular astrocytes, raising the possibility that Poldip2 may be involved in maintaining its structure. We investigated the role of Poldip2 in the late BBB permeability induced by cerebral ischemia.MethodsTransient middle cerebral artery occlusion (tMCAO) was induced in Poldip2+/+ and Poldip2+/− mice. The volume of the ischemic lesion was measured in triphenyltetrazolium chloride-stained sections. BBB breakdown was evaluated by Evans blue dye extravasation. Poldip2 protein expression was evaluated by western blotting. RT-PCR, zymography, and ELISAs were used to measure mRNA levels, activity, and protein levels of cytokines and MMPs. Cultured astrocytes were transfected with Poldip2 siRNA, and mRNA levels of cytokines were evaluated as well as IκBα protein degradation.ResultsCerebral ischemia induced the expression of Poldip2. Compared to Poldip2+/+ mice, Poldip2+/− animals exhibited decreased Evans blue dye extravasation and improved survival 24 h following stroke. Poldip2 expression was upregulated in astrocytes exposed to oxygen and glucose deprivation (OGD) and siRNA-mediated downregulation of Poldip2 abrogated OGD-induced IL-6 and TNF-α expression. In addition, siRNA against Poldip2 inhibited TNF-α-induced IκBα degradation. TNF-α, IL-6, MCP-1, VEGF, and MMP expression induced by cerebral ischemia was abrogated in Poldip2+/− mice. The protective effect of Poldip2 depletion on the increased permeability of the BBB was partially reversed by systemic administration of TNF-α.ConclusionsPoldip2 is upregulated following ischemic stroke and mediates the breakdown of the BBB by increasing cerebral cytokine production and MMP activation. Therefore, Poldip2 appears to be a promising novel target for the development of therapeutic strategies to prevent the development of cerebral edema in the ischemic brain.Electronic supplementary materialThe online version of this article (10.1186/s12974-017-1032-1) contains supplementary material, which is available to authorized users.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.