In studies of Csf1op/op and wild-type mice with diabetes, we found delayed gastric emptying to be associated with increased production of inflammatory factors, and reduced production of anti-inflammatory factors, by macrophages, leading to loss of ICC.
Regulation of mitochondrial morphology is crucial for the maintenance of physiological functions in many cell types including cardiomyocytes. Small and fragmented mitochondria are frequently observed in pathological conditions, but it is still unclear which cardiac signalling pathway is responsible for regulating the abnormal mitochondrial morphology in cardiomyocytes. Here we demonstrate that a downstream kinase of G protein-coupled receptor (G PCR) signalling, protein kinase D (PKD), mediates pathophysiological modifications in mitochondrial morphology and function, which consequently contribute to the activation of apoptotic signalling. We show that G PCR stimulation induced by α -adrenergic stimulation mediates mitochondrial fragmentation in a fission- and PKD-dependent manner in H9c2 cardiac myoblasts and rat neonatal cardiomyocytes. Upon G PCR stimulation, PKD translocates from the cytoplasm to the outer mitochondrial membrane (OMM) and phosphorylates a mitochondrial fission protein, dynamin-like protein 1 (DLP1), at S637. PKD-dependent phosphorylation of DLP1 initiates DLP1 association with the OMM, which then enhances mitochondrial fragmentation, mitochondrial superoxide generation, mitochondrial permeability transition pore opening and apoptotic signalling. Finally, we demonstrate that DLP1 phosphorylation at S637 by PKD occurs in vivo using ventricular tissues from transgenic mice with cardiac-specific overexpression of constitutively active Gα protein. In conclusion, G PCR-PKD signalling induces mitochondrial fragmentation and dysfunction via PKD-dependent DLP1 phosphorylation in cardiomyocytes. This study is the first to identify a novel PKD-specific substrate, DLP1 in mitochondria, as well as the functional role of PKD in cardiac mitochondria. Elucidation of these molecular mechanisms by which PKD-dependent enhanced fission mediates cardiac mitochondrial injury will provide novel insight into the relationship among mitochondrial form, function and G PCR signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.