This study aims to identify novel markers for gestational diabetes (GDM) in the biochemical profile of maternal urine using NMR metabolomics. It also catalogs the general effects of pregnancy and delivery on the urine profile. Urine samples were collected at three time points (visit V1: gestational week 8–20; V2: week 28±2; V3∶10–16 weeks post partum) from participants in the STORK Groruddalen program, a prospective, multiethnic cohort study of 823 healthy, pregnant women in Oslo, Norway, and analyzed using 1H-NMR spectroscopy. Metabolites were identified and quantified where possible. PCA, PLS-DA and univariate statistics were applied and found substantial differences between the time points, dominated by a steady increase of urinary lactose concentrations, and an increase during pregnancy and subsequent dramatic reduction of several unidentified NMR signals between 0.5 and 1.1 ppm. Multivariate methods could not reliably identify GDM cases based on the WHO or graded criteria based on IADPSG definitions, indicating that the pattern of urinary metabolites above micromolar concentrations is not influenced strongly and consistently enough by the disease. However, univariate analysis suggests elevated mean citrate concentrations with increasing hyperglycemia. Multivariate classification with respect to ethnic background produced weak but statistically significant models. These results suggest that although NMR-based metabolomics can monitor changes in the urinary excretion profile of pregnant women, it may not be a prudent choice for the study of GDM.
Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g) randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR) was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate). The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age) as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.
Understanding the ecological processes that generate complex community structures may provide insight into the establishment and maintenance of a normal microbial community in the human gastrointestinal tract, yet very little is known about how biotic interactions influence community dynamics in this system. Here, we use natural strains of Escherichia coli and a simplified model microbiota to demonstrate that the colonization process on the strain level can be context dependent, in the sense that the outcome of intra-specific competition may be determined by the composition of the background community. These results are consistent with previous models for competition between organisms where one competitor has adapted to low resource environments whereas the other is optimized for rapid reproduction when resources are abundant. The genomic profiles of E. coli strains representing these differing ecological strategies provide clues for deciphering the genetic underpinnings of niche adaptation within a single species. Our findings extend the role of ecological theory in understanding microbial systems and the conceptual toolbox for describing microbial community dynamics. There are few, if any, concrete examples of context-dependent competition on a single trophic level. However, this phenomenon can have potentially dramatic effects on which bacteria will successfully establish and persist in the gastrointestinal system, and the principle should be equally applicable to other microbial ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.