Background The peroxisome proliferator-activated receptor (PPAR)-γ plays a key role in adipose tissue differentiation and fat metabolism. However, it is unclear which factors may regulate its expression and whether obese patients have changes in adipose tissue expression of PPAR-γor potential regulators such as miR-27. Thus, our aims were to analyze PPAR-γ and miR-27 expression in adipose tissue of obese patients, and to correlate their levels with clinical variables. Subjects and Methods. We included 43 morbidly obese subjects who underwent sleeve gastrectomy (31 of them completed 1-year follow-up) and 19 non-obese subjects. mRNA expression of PPAR-γ1 and PPAR-γ2, miR-27a, and miR-27b was measured by qPCR in visceral and subcutaneous adipose tissue. Clinical variables and serum adipokine and hormone levels were correlated with PPAR-γ and miR-27 expression. In addition, a systematic review of the literature regarding PPAR-γ expression in adipose tissue of obese patients was performed. Results We found no differences in the expression of PPAR-γ and miR-27 in adipose tissue of obese patients vs. controls. The literature review revealed discrepant results regarding PPAR-γ expression in adipose tissue of obese patients. Of note, we described a significant negative correlation between pre-operative PPAR-γ1 expression in adipose tissue of obese patients and post-operative weight loss, potentially linked with insulin resistance markers. Conclusion PPAR-γ1 expression in adipose tissue is associated with weight loss after sleeve gastrectomy and may be used as a biomarker for response to surgery.
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ–organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.