Recent research on muscle and fascia simulation for visual effects relies on numerical methods such as the finite element method or finite volume method. These approaches produce realistic results, but require high computational time and are complex to set up. On the other hand, position‐based dynamics offers a fast and controllable solution to simulate surfaces and volumes, but there is no literature on how to implement constraints that could be used to realistically simulate muscles and fascia for digital creatures with this method. In this paper, we extend the current state‐of‐the‐art in Position‐Based Dynamics to efficiently compute realistic skeletal muscle and superficial fascia simulation. In particular, we embed muscle fibres in the solver by adding an anisotropic component to the distance constraints between mesh points and apply overpressure to realistically model muscle volume changes under contraction. In addition, we also define a modified distance constraint for the fascia that allows compression and enables the user to scale the constraint's original distance to gain elastic potential at rest. Finally, we propose a modification of the extended position‐based dynamics algorithm to properly compute different sets of constraints and describe other details for proper simulation of character's muscle and fascia dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.