The accurate description of the flow of water in porous media is of the greatest importance due to its numerous applications in several areas (groundwater, soil mechanics, etc.). The nonlinear Richards equation is often used as the governing equation that describes this phenomenon and a large number of research studies aimed to solve it numerically. However, due to the nonlinearity of the constitutive expressions for permeability, it remains a challenging modeling problem. In this paper, the stationary form of Richards’ equation used in saturated soils is solved by two numerical methods: generalized finite differences, an emerging method that has been successfully applied to the transient case, and a finite element method, for benchmarking. The nonlinearity of the solution in both cases is handled using a Newtonian iteration. The comparative results show that a generalized finite difference iteration yields satisfactory results in a standard test problem with a singularity at the boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.