The surface chemical properties of undoped tetragonal ZrO and the gas-phase dependence of the tetragonal-to-monoclinic transformation are studied using a tetragonal ZrO polymorph synthesized via a sol-gel method from an alkoxide precursor. The obtained phase-pure tetragonal ZrO is defective and strongly hydroxylated with pronounced Lewis acidic and Brønsted basic surface sites. Combined in situ FT-infrared and electrochemical impedance measurements reveal effective blocking of coordinatively unsaturated sites by both CO and CO, as well as low conductivity. The transformation into monoclinic ZrO is suppressed up to temperatures of ∼723 K independent of the gas phase composition, in contrast to at higher temperatures. In inert atmospheres, the persisting structural defectivity leads to a high stability of tetragonal ZrO, even after a heating-cooling cycle up to 1273 K. Treatments in CO and H increase the amount of monoclinic ZrO upon cooling (>85 wt%) and the associated formation of either Zr-surface-(oxy-)carbide or dissolved hydrogen. The transformation is strongly affected by the sintering/pressing history of the sample, due to significant agglomeration of small crystals on the surface of sintered pellets. Two factors dominate the properties of tetragonal ZrO: defect chemistry and hydroxylation degree. In particular, moist conditions promote the phase transformation, although at significantly higher temperatures as previously reported for doped tetragonal ZrO.
Materials crystallizing in highly symmetric structures are of particular interest as they display superior physical properties in many relevant technological areas such as solid oxide fuels cells (SOFCs), catalysis, or photoluminescent materials. While the rare earth molybdenum oxides RE 6 MoO 12 with the large rare earth cations RE = La to Dy crystallize in a cubic defect fluorite structure type (Fm3̅ m, no. 225), the compounds with the smaller cations RE = Tm− Lu could hitherto only be synthesized in the rhombohedral defect fluorite structure type (R3̅ , no. 148). In the following, new low temperature access to the rare earth molybdenum oxides RE 6 MoO 12−δ (RE = Tm−Lu) crystallizing in the highly symmetric cubic bixbyite structure type (Ia3̅ , no. 206) will be discussed. The three-step method comprises preparation of the rhombohedral phases by solution combustion (SC) reactions, their reduction including simultaneous structural transitions from the rhombohedral to the cubic phases, and subsequent reoxidations while preserving their cubic structures. Detailed studies on this process were performed on the compound Yb 6 MoO 12−δ using TG-DTA, XPS, EDX, and X-ray powder diffraction (XRPD) measurements. In contrast to the rhombohedral phase Yb 6 MoO 12 , which does not show any ionic conductivity, the cubic bixbyite structured compound can be classified as a promising ionic conductor. Electrochemical impedance spectroscopy (EIS) revealed that bulk and grain boundary activation energy determined to be 144.6 kJ mol −1 and 150.4 kJ mol −1 , respectively, range in the same regime as the conventional ionic conductor 8-YSZ. Furthermore, the new cubic phase Yb 6 MoO 12−δ displays improved coloristic properties (UV−Vis spectroscopy) with a yellow hue value (CIE-Lab) being enhanced from b* = 26.0 of the rhombohedral to b* = 46.1 for the cubic phase, which is relevant for the field of inorganic pigments.
We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.